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Abstract

This bachelor thesis adresses the principle of polarisation on three different alternatives.
It finds three different functions that find a measure for polarisation, that satisfy certain
constraints. Then it argues about the usefulness of these functions.

1 Introduction

In this bachelor thesis, we introduce the topic of polarisation. Polarisation is a measurement to
which extent different preferences can be harmonized. When there is low polarisation, it is easy
to harmonize the different preferences, whereas this is difficult with high polarisation. There
has been prior research in the field of polarisation (Esteban, J.-M. and Ray, D. (1994)., Duclos,
J.-Y., Esteban, J., and Ray, D. (2004) and Baldiga, K. A. and Green, J. R. (2013)), but these
studies were all on a one-dimensional scale (left/right, high/low), that is, people can only choose
between two different alternatives. In this thesis we study polarisation measurement for arbitrary
combinations of individual preferences, on three alternatives. Our goal is to find reasonable
measures expressing polarisation. We take the normative way. So, these measures should
satisfy certain desirable constraints/properties.

This thesis will be structured as follows: First we have a section where we describe the
model, and explain the definitions we use and the constraints that we impose on the functions.
Then, we introduce three different functions to measure polarisation on three alternatives, when
considering two agents. We investigate whether these functions fulfill the constraints. Next, we
investigate how the functions that do satisfy the constraints can be extended to more than 2
agents. Finally, we give some recommendations for further research.

* Joost Veth graduated for his bachelor Econometrics and Operations Research at Maastricht University in July
2014, and is currently doing his master in Economic and Financial Research at Maastricht University.
Contact: J.veth@student.maastrichtuniversity.nl
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2 Model and Definitions

Let A = {a1, a2, ..., am} be the set of alternatives.
Let N be the set of agents, that can indicate their preferences over A.
When an agent indicates his preference, for example agent i’s top choice is alternative a, his

second choice is alternative b and his third choice is alternative c, we denote this as (a, b, c). We
call (a, b, c) agent i’s preferred order.

Preferences are formalised by Linear Orders. These are complete, antisymmetric and
transitive relations on A. This defines the interpretation of a pair that is in the relation S.

When ab ∈ S we say that a is weakly preferred to b. Furthermore, when ab ∈ S and ba /∈ S,
we say that a is strictly preferred to b.

A relation S ⊆ A×A is complete if ab ∈ S or ba ∈ S, for all alternatives a, b ∈ A.
If ab ∈ S implies ba /∈ S for all alternatives a, b ∈ A, with a 6= b, then the relation S is

antisymmetric;
When aiaj ∈ S and ajak ∈ S implies that aiak ∈ S for all i, j, k ∈ {1, ...,m}, relation S is

transitive. In words: if ai is preferred over aj , and aj is preferred over ak, then ai is preferred
over ak.

Let L denote the set of all linear orders on A.
It is possible to put different agents with possibly different preferred orders together in sets,
{R1, . . . , Rl}.

For a set Ri, we define Di as the set of dominance pairs, a set with all the pairs ab ∈ A×A
for which it holds that the first entrance of the pair is strictly preferred over the second entrance
by at least one of the agents in that set.

For example, if agent i has preferred order (a,b,c) and agent j has preferred order (c,a,b), and
they are together in set R1, then D1 = {ab, ac, ca, bc, cb}.

Furthermore, the symmetric difference of two sets D1 and D2, D14D2 is the set of the
elements that are in one of the sets, but not in their intersection.

So, if for example agent i has order (a,b,c) and is in set R1, and agent j has order (c,a,b), and
is in R2, then D14D2 = {ac, ca, bc, cb}.

The preference of agent i is denoted by p(i).
A profile is a combination of linear orders: p : N → L, where N is the set of agents. LN

denotes the set of profiles.
We define p̄ab to be the number of times alternative a is preferred over alternative b at profile

p. For m alternatives, this gives for profile p an m×m matrix P̄ of pairwise comparisons of the
following form:
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P̄ =



0 p̄a1a2 p̄a1a3 · · · p̄a1am

p̄a2a1 0 p̄a2a3 · · · p̄a2am

p̄a3a1 p̄a3a2 0 · · · p̄a3am
...

...
...

. . .
...

p̄ama1 p̄ama2 p̄ama3 · · · 0


Note: for a profile q, Q̄ is its matrix of pairwise comparisons.
Define p̂ab= p̄ab − p̄ba, or, in words, the net preference between a and b.
We say that profiles p and q are pairwise conflict free, if the following holds: For all al-

ternatives aiaj ∈ A × A, (i, j ∈ 1, ...,m), if p̂ab > 0, then q̂ab ≥ 0 and q̂ab > 0 implies that
p̂ab ≥ 0.

Now, we introduce a function, φ : Ln → R+, to measure polarisation.
Furthermore, we state a couple of constraints on the function φ :

1) Regularity: 1.1:φ(Rn) = 0, where Rn = (R,R, ..., R) is a profile where all the linear orders
are the same;

1.2:φ(RN1 , (−R)N2) = 1, whenever the number of elements in N1 is equal to the number of
elements in N2.

2) Neutrality : φ(p) = φ(πp) for any permutation π : A × A, where πp(i) = {π(x)π(y) :

xy ∈ p(i)} and πp = (πp(1), πp(2), . . . , πp(n)). In words, this means that the names of the
alternatives have no influence on the measure of polarisation. For example, if R1 = (a, b, c),
R2 = (a, c, b), R3 = (c, a, b) and R4 = (c, b, a), and π(a) = c, π(b) = a, π(c) = b, then neutrality
means that φ(R1, R2) = φ(R3, R4).

3) Pairwiseness : if for profile p and q, P̄ = Q̄, then φ(p) = φ(q). In words: if more than one
profile leads to the same matrix of pairwise comparisons, then these profiles have the same
measure of polarisation.

4) Additivity : If profile p and q are pairwise conflict free, then it holds that n
n+mφ(p) +

m
n+mφ(q) = φ(p, q) if there are n agents in p and m agents in q.

We start by considering the following situation: We have two agents, say agent i and j, and 3
alternatives, called a,b and c.

These two agents indicate their preferences about the 3 alternatives.
Once they have chosen their preference, we are interested in the measure of polarisation of

those two preferences. The situation is illustrated in figure 1.
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Figure 1 – Graphical illustration of the situation with three alternatives.

3 Functions

In this section, we will introduce three different functions that measure polarisation on three
alternatives, and we investigate whether these functions satisfy the different constraints for the
case with two agents.

3.1 Function 1

The method we are going to use is to start with a function that satisfies the regularity constraint,
and then see if this function also satisfies the other constraints. If so, we try to extend this
function to more than two agents. If this function does not satisfy all the constraints, we will
search for other functions that do satisfy all the constraints.

So, first we try to find a function φ that satisfies the constraint of regularity in the case of two
agents, i and j.

In this approach, we allocate three different scores to the preferences of agent i and j. These
score are 1, 0 and −1.

Let R1 = a1, a2, a3 and R2 = aj1, aj2, aj3. That is, the top choice of agent 1 is a1, his second
choice a2 and his third choice a3, and the top choice of agent 2 is aj1, his second choice aj2 and
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his third choice aj3.
Then, we allocate the scores in the following way:

score(1, at) =


1 if t = 1

0 if t = 2

−1 if t = 3

score(2, ajt) =


1 if t = a1

0 if t = a2

−1 if t = a3

So for example, if agent i’s preferred order is (a, b, c), then a1 gets score 1, a2 gets score 0

and a3 gets score −1. Then, if the preferred order of agent j is (b, c, a), then aj1 receives score 0,
aj2 receives score −1 and aj3 receives score 1.

The following function gives a polarisation measure to all possible combinations of preferences
for agent i and j that satisfy the regularity constraint:

(1) φ(R1, R2) =
−(

∑3

t=1(score(1, at)× score(2, ajt))) + 2

4

Now, there are four possible outcomes:
1) Agent i and agent j both have as preferred order (a,b,c). Then (

∑3

t=1(score(1, at) ×
score(2, ajt))) = 2, and −(

∑3

t=1(score(1, at)× score(2, ajt))) + 2 = 0. Hence φ = 0.
2) Agent i has as preferred order (a,b,c) and agent j has as preferred order either (a,c,b)

or (b,a,c). In these cases, (
∑3

t=1(score(1, at) × score(2, ajt))) = 1 and −(
∑3

t=1(score(1, at) ×
score(2, ajt))) + 2 = 1. Hence, φ = 1

4 .
3) Agent i has as preferred order (a,b,c) and agent j has as preferred order either (c,a,b) or

(b,a,c). Then, (
∑3

t=1(score(1, at)×score(2, ajt))) = −1, and−(
∑3

t=1(score(1, at)×score(2, ajt)))+
2 = 3. Hence, φ = 3

4 .
4) Agent i has as preferred order (a,b,c) and agent j has as preferred order (c,b,a). Then

(
∑3

t=1(score(1, at) × score(2, ajt))) = −2, and −(
∑3

t=1(score(1, at) × score(2, ajt))) + 2 = 4.
Thus φ = 1.

For every other order agent i can choose, an analogous analysis can be applied.

This function satisfies the regularity constraint.
Moreover, it satisfies the neutrality constraint. This is guaranteed by the fact that the values

for a1, a2 and a3 are always 1, 0 and −1 respectively, independent of the preference of agent i.
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Hence, as long as the distance between the two agents is the same, the function will give the
same score for the polarisation. Thus, neutrality is satisfied.
Pairwiseness is also satisfied. To prove that the constraint of pairwiseness is also satisfied,

we consider all the possible cases and we prove for each individual case that pairwiseness is
satisfied.

Without loss of generality, we assume that the preferred order of agent i is (a,b,c).
Case 1: The preferred order of agent j is also (a,b,c). Then by the regularity constraint, the

polarisation measure is always 0. Thus, pairwiseness is satisfied;

Case 2: The preferred order of agent j is (a,c,b). Then, P̄2 =


0 2 2

0 0 1

0 1 0

. When you consider

P̄2, we see that for both agents, a is preferred over b, and a is preferred over c. So, for both
agents, a is the first choice. Furthermore, one agent prefers b over c, and the other prefers c
over b. Since we assumed that the preference of agent i is (a,b,c), and thus that agent i prefers
b over c, there is no other way to get P̄2 other than that agent j prefers c over b, and thereby has
as preferred order (a,c,b). Since P̄2 can only be reached in one way, pairwiseness is satisfied.

Case 3: The preferred order of agent j is (c,a,b). Then, P̄3 =


0 2 1

0 0 1

1 1 0

. When you consider

P̄3, we see that c is preferred over a by one agent, and the other prefers a over c. Since agent i
prefers a over c, it must always be the case that agent j prefers c over a. Similarly, one agent
prefers c over b and the other way around, and since agent i prefers b over c, agent j must prefer
c over b. Furthermore, they both prefer a over b. Altogether, there is only one option for the
order of agent j: (c,a,b). Again, pairwiseness is satisfied.

Case 4: The preferred order of agent j is (c,b,a). Then by the regularity condition, the
polarisation measure is always 1. Thus, pairwiseness is satisfied;

Since these are all the possible scenarios, we can conclude that pairwiseness is satisfied.
However, this function does not satisfy the additivity constraint.

proof: To prove that this function does not satisfy additivity, we have to consider three
different agents, since additivity has no bite in case there are at most 2 agent (which will be
showed later on). So we consider three agents, 1,2 and 3. Agent 1 has as preferred order
R1 : p(1) = (a, b, c) , for agent 2, R2 : p(2) = (a, c, b) and for agent 3, R3 : p(3) = (c, a, b).
Then φ(R1, R2) = 1

4 , φ(R2, R3) = 1
4 and φ(R1, R3) = 3

4 . Their respective matrices of pairwise
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comparisons are:

P̄12 =


0 2 2

0 0 1

0 1 0

, P̄23 =


0 2 1

0 0 0

1 2 0

 and P̄13 =


0 2 1

0 0 1

1 1 0

. Since these matrices are all

pairwise conflict free, φ(R1, R2, R2, R3) = 1
2φ(R1, R2) + 1

2φ(R2, R3) according to the additivity
constraint. Hence, φ(R1, R2, R2, R3) = 1

2 ×
1
4 + 1

2 ×
1
4 = 1

4 . But also, φ(R1, R2, R2, R3) =
1
2φ(R2, R2) + 1

2φ(R1, R3), thus φ(R1, R2, R2, R3) = 1
2 × 0 + 1

2 ×
3
4 = 3

8 . This proves that the
additivity constraint is not satisfied.

3.2 Function 2

In this approach, we take a look at the situation with two agents and three alternatives from
a different point of view. When we compare two different preferences, we take a look at the
number of times that two adjacent elements have to be swapped to go from one order to the
other. For example, to go from (a,b,c) to (c,a,b), two swaps have to be made.

Now, we try to allocate a weight to the conflict that arises when a swap has to be made to unite
two different preferences, called the weight of a swap, w(a1a2). Then, the polarity measure of
two preferences is defined as the sum of the weights of all the swaps that have to be made to
unite the two preferences.

Preferably, we distinguish between a ’high value’ swap ( when we do (a,b,c,)→(b,a,c), the top
two alternatives are swapped) and a ’low value’ swap ( (a,b,c)→(a,c,b) ). The idea behind this,
is that people often value their first preference higher than their second and third preference.
That is, if they prefer the order (a,b,c), they will feel harmed more when the order (b,a,c) is
chosen, than when the order (a,c,b) is chosen. Optimally, this would be reflected in the measure
of polarisation. Unfortunately, this property is in conflict with the additivity constraint.

proof We prove this by contradiction:
Assume we can distinguish between a ’low value’ swap wl(a1a2), and a ’high value’ swap,

wh(a1a2):
To go from (a,b,c) to (c,b,a) takes three swaps: either (a,b,c)→(b,a,c)→(b,c,a)→(c,b,a), call

this path 1, or (a,b,c)→(a,c,b)→(c,a,b)→(c,b,a), path 2. First, we look at path 1. We defined
w(a1a2) as ’the conflict that arises when there has to be made a swap’, and when the swap is
made between the two first elements, we say this is a ’high value’ swap, otherwise we have a
’low value’ swap. So, the conflict that arises by the swap from (a,b,c) to (b,a,c) is wh(ab). For the
swap from (b,a,c) to (b,c,a), this is wl(ac) and for the swap from (b,c,a) to (c,b,a) this is wh(bc).
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Now consider 4 agents: Agent 1 has as preferred order R1 : p(1) = (a, b, c) , agent 2 has R2 :

p(2) = (b, a, c), agent 3 has R3 : p(3) = (b, c, a) and agent 4 has R4 : p(4) = (c, b, a).

Then P̄12 =


0 1 2

1 0 2

0 0 0

, P̄24 =


0 0 1

2 0 1

1 1 0

 and P̄14 =


0 1 1

1 0 1

1 1 0

. Since these matrices

are all pairwise conflict free, φ(R1, R2, R2, R4) = 1
2φ(R1, R2) + 1

2φ(R2, R4) according to the
additivity constraint.

But also φ(R1, R2, R2, R4) = 1
2φ(R1, R4) + 1

2φ(R2, R2). Since φ(R2, R2) = 0, we know that
1
2φ(R1, R4) = 1

2φ(R1, R2) + 1
2φ(R2, R4). Hence, φ(R1, R4) = φ(R1, R2) + φ(R2, R4) (?).

Moreover, P̄23 =


0 1 1

1 0 2

1 0 0

 and P̄34 =


0 0 0

2 0 1

2 1 0

. These matrices are pairwise conflict

free as well. Therefore, again by the additivity constraint, φ(R2, R3, R3, R4) = 1
2φ(R2, R3) +

1
2φ(R3, R4), and φ(R2, R3, R3, R4) = 1

2φ(R2, R4) + 1
2φ(R3, R3). Hence, φ(R2, R4) = φ(R2, R3) +

φ(R3, R4) (??).
From (?) and (??), it follows that φ(R1, R4) = φ(R1, R2) + φ(R2, R3) + φ(R3, R4). To go from

R1 to R2, you swap from (a,b,c) to (b,a,c), so the conflict that arises by the swap is wh(ab). Thus,
φ(R1, R2) = wh(ab). Similarly, φ(R2, R3) = wl(ac) and φ(R3, R4) = wh(bc). By the regularity
constraint, we know that φ((a, b, c), (a, b, c)) = 0, and φ((a, b, c), (c, b, a)) = 1.

Thus, wh(ab) + wl(ac) + wh(bc) = 1.
For path 2, we find by the same reasoning that wl(bc) + wh(ac) + wl(ab) = 1.
Therefore, wh(ab) + wl(ac) + wh(bc) = wl(bc) + wh(ac) + wl(ab).
In an analogous way, one can find that wl(ac) + wh(ab) + wl(bc) = wh(bc) + wl(ab) + wh(ac),

and they also both add up to 1. But this would mean that
wl(bc) + wh(ac) + wl(ab) = wh(bc) + wl(ab) + wh(ac). Hence, that wl(bc) = wh(bc). A similar

analysis could be done on all other possible pairs, contradicting our assumption that we can
distinguish between a ’low value’ swap wl(a1a2), and a ’high value’ swap, wh(a1a2). This proves
that we cannot distinguish between ’high’ and ’low’ values.

In this function, we make use of the concept of the symmetric difference of two sets D1and
D2, D14D2, which we defined as the set of the elements that are in one of the sets, but not in
their intersection.

The two sets D1 and D2 are both a set of dominance pairs, (in the set are all the pairs for
which it holds that the first entrance of the pair is strictly preferred over the second entrance by
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at least one of the agents in the set) for two different profiles.
If for example R1 consists of only agent i, which has as order (a,b,c) and R2 consists of only

agent j, with order (b,c,a), then D14D2 = {ab, ac, ba, ca}.
Note that in this symmetric difference, each pair that has to be swapped to go from the first

order (a,b,c) to the second (b,c,a), namely ab and ac, is present twice.
It can be shown that this is always the case.
Taking this as a starting point, We take all the elements in the symmetric difference of n orders,

then we take the sum of their respective weights, and then we divide this number by the number
of agents, n, to get a value for the polarisation function φ:

(2) φ(R1, R2) =

∑
xy∈D14D2

w(x, y)

n

Since φ((a, b, c), (c, b, a)) = 1, we know that 2w(ab)+2w(ac)+2w(bc)
2 = 1. Hence, 2w(ab)+2w(ac)+

2w(bc) = 2, therefore w(ab) + w(ac) + w(bc) = 1.
For simplicity, we now assume that the polarisation is spread equally over the different pairs,

thus w(ab) = w(ac) = w(bc) = 1
3 .

If this is the case,
Regularity is satisfied, since when the two pairs are equal, then D14D2 = ∅, thus the numera-

tor of φ(R1, R2) = 0, hence φ(R1, R2) = 0, and we already have seen that φ(RN1, (−R)N2) = 1.
Neutrality is only satisfied if all the different weights are valued equally. Since this is the

case, Neutrality is satisfied;
As proved before, pairwiseness is always satisfied for two agents.
In the case of two agents, these agents can either have the same preference, or a different

preference. In the case that the two agents (i and j) have the same preference, φ(i, j) = 0. Since
φ(i) = φ(j) = 0 by definition, since there is no polarisation when only one agent indicated his
preference, it is automatically true that φ(i, j) = 1

2φ(i) + 1
2φ(j). Thus, when the two agents have

the same preference, additivity automatically follows from regularity.
When the two agents don’t have the same preference, their respective matrices of pairwise

comparisons are conflicting for at least one pair of preferences i, j ∈ A. Therefore, additivity
does not apply in these cases. Hence, the additivity rule is always satisfied when you only
consider 2 agents. Thus, this function satisfies all the constraints for two agents.

From three agents on, this approach doesn’t work anymore, and we have to adapt our function.
This will be done in section 4.
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3.3 Function 3

We also considered a third function to measure polarisation. This function is inspired by
the principle of the Cobb-Douglas utility function [4], where the maximum consumer utility is
calculated in a similar way as the denominator of this function is calculated.

In this approach, the matrix of pairwise comparisons plays a central role. Each profile has
such a matrix. In this approach, we multiply each entry p̄ab, (a 666= b) of this matrix that is in the
upper triangular (that is, each entry that is above the diagonal) by its reversed entry in the lower
triangular. Then we sum up all these products, and divide this by three times the maximum value
of such a product. If n, the number of agents, is odd, this maximum value is (1

2n−
1
2)(1

2n+ 1
2). If

n is even, this maximum value is (1
2n)2. More formally:

(3) φ =



∑
∀1≤i<j≤m

(p̄ab×p̄ba)

3×( 1
2
n)2

(a 66= b), if n is even

∑
∀1≤i<j≤m

(̄pab×p̄ba)
3
4

(n2−1)
(a 66= b), if n is odd

For two agents, agent i and j, this function has four possible outcomes. We assume, without
loss of generality, that agent i has as preferred order (a,b,c).

If agent j has preferred order (a,b,c), we get as matrix of pairwise comparisons P̄1 =
0 2 2

0 0 2

0 0 0

 ; In this case, φ = 0.

If agent j has preferred order (a,c,b), P̄2 =


0 2 2

0 0 1

0 1 0

, and if agent j has preferred order

(b,a,c),P̄6 =


0 1 2

1 0 2

0 0 0

. In both cases, φ = 1
3 .

If agent j has as order (c,a,b), P̄3 =


0 2 1

0 0 1

1 1 0

; If agent j has as order (b,c,a), then
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P̄5 =


0 1 1

1 0 2

1 0 0

. In these cases, φ = 2
3 .

If agent j has as order (c,b,a), P̄4 =


0 1 1

1 0 1

1 1 0

 ,and φ = 1.

The same analysis can be done for all other preferences agent i can choose.
Since the outcomes for φ for the different combinations of preferences of the two agents are

all the same as they are for function two, we know that regularity, additivity, pairwiseness and
neutrality are all satisfied.

4 Extending to more than 2 agents

4.1 Function 2

Our current function 2, defined in section 3.2, does not work for more than two agents.

proof Consider for example two situations where you have 2 sets, with two agents is both
sets.

In situation 1, both agents 1 and 2 are in set R1 and have preferred order (a,b,c). Moreover,
both agents 3 and 4 are in set R2 and have preferred order (c,b,a).

Then D1= {ab,ac,bc}, D2= {ba,ca,cb} and D14D2 = {ab, ac, bc, ba, ca, cb}. Then φ(R1, R2) =
1
2 .

In situation 2, the agents have all the same preferences (thus, the measure of polarisation
should be the same), but now agent 1 and 3 are in set R1, and agent 2 and 4 are in set R2.

Then D1= {ab,ac,bc,ba,ca,cb} and D2= {ab,ac,bc,ba,ca,cb}. Then D14D2 = {∅}. Hence
φ(R1, R2) = 0. This cannot be the case.

The easiest way to tackle this problem is to reformulate the formula such that the agents are
not divided in two groups, but that they are all considered together. We came up with the next
function:

(4) φ(p) =
∑

ab∈A×A

w(ab)×min{P̄ab, P̄ba}
n

For two agents, this formula gives the same result as (2):
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min{P̄ab, P̄ba} can adopt two values, zero and one.
For a particular pair ab, if both agents prefer a over b, P̄ab = 2 and P̄ba = 0. In this case.

min{P̄ab, P̄ba} = 0, and thus w(ab) is not counted. For (2), in the same situation the pair ab
would be in both sets R1 and R2, and therefore not be counted either.

For a pair ab, if one agent prefers a over b, and the other prefers b over a, P̄ab = 1 and P̄ba = 1.
In this case, min{P̄ab, P̄ba} = 1, and thus w(ab) is counted once. Note: w(ab) is also counted
when considering pair ba. Hence, every time that an alternative a is once preferred over another
alternative b, and b once preferred over a, w(ab) is counted twice. This is exactly what happens
for (2) when such a situation occurs, since the two different pairs are in the different sets, but not
in their intersection. This means that for each situation with two agents and three alternatives,
(4) will generate the same outcome as (2).

For more than two agents, the function satisfies all the constraints:
When all the agents have the same preferences, min{P̄ab, P̄ba} = 0 for all pairs ab. This

means that φ = 0. When half of the agents are in set R1 and have the exact opposite preferred
order compared to the other half of the agents in R2, min{P̄ab, P̄ba} = 1

2n for all pairs ab, resulting
in φ = 1. Hence, the regularity constraint is satisfied. Note that for an odd number of agents, it
is not possible to obtain the value of 1 for φ. But according to the regularity constraint, φ has to
be equal to one only if the two sets R1 and R2 have the same amount of agents. This cannot be
the case with an odd number of agents, therefore φ doesn’t have to be able to receive the value
of 1 in these cases.
Neutrality is also satisfied, since the different weights are valued equally;
pairwiseness is satisfied if different profiles that lead to the same matrix of pairwise compar-

isons, have the same measure of polarisation. In this function, when two profiles lead to the
same matrix of pairwise comparisons, all the min{P̄ab, P̄ba} are the same for the two profiles,
and therefore φ is equal for both profiles. Hence, pairwiseness is satisfied.

For additivity to be applicable at two profiles, p and q, it must hold for all pairs ab, that
if p̂ab > 0, then q̂ab ≥ 0 and q̂ab > 0 implies that p̂ab ≥ 0. In this function, this means that
min{Q̄ab, Q̄ba}+min{P̄ab, P̄ba} = min{Q̄ab + P̄ab, Q̄ba + P̄ba}(?).

This means that, when there are n agents in p, and m agents in q, and p and q are pairwise
conflict free, then:

φ(p, q) =
∑

ab∈A×A

w(ab)×min{Q̄ab + P̄ab, Q̄ba + P̄ba}
m+ n

This is in correspondence with the additivity constraint:
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proof: Consider two profiles, p and q, that are both pairwise conflict free, and there are n
agents in profile p, and m agents in profile q.

Then according to the additivity constraint, the following must hold: n
n+mφ(p) + m

n+mφ(q) =

φ(p, q) .
For this function, n

n+mφ(p) = n
n+m

∑
ab∈A×A

w(ab)×min{P̄ab,P̄ba}
n = n

n(n+m)

∑
ab∈A×A

w(ab)×min{P̄ab, P̄ba}

=

∑
ab∈A×A

w(ab)×min{P̄ab,P̄ba}

n+m and m
n+mφ(q) = m

n+m

∑
ab∈A×A

w(ab)×min{Q̄ab,Q̄ba}
m = m

m(n+m)

∑
ab∈A×A

w(ab)×

min{Q̄ab, Q̄ba}=

∑
ab∈A×A

w(ab)×min{Q̄ab,Q̄ba}

n+m . Hence, n
n+mφ(p)+ m

n+mφ(q) =

∑
ab∈A×A

w(ab)×min{P̄ab,P̄ba}

n+m +∑
ab∈A×A

w(ab)×min{Q̄ab,Q̄ba}

n+m . by (?), this is equal to
∑

ab∈A×A

w(ab)×min{Q̄ab+P̄ab,Q̄ba+P̄ba}
m+n .

This proves that the additivity constraint is always satisfied.

4.2 Function 3

Three agents First, we will broaden function 3 to three agents.
For three agents, there are at most 43 = 64 matrices of pairwise comparisons possible ( in

fact, there are less matrices). One can divide these matrices into four groups, related to the
number of zeros on the upper and lower triangular:

In group 1, {P̄ab, P̄ba} = {0, 3} for three pairs ab ∈ A × A, a 6= b, and {P̄ab, P̄ba} = {3, 0} for
the other three pairs ab ∈ A×A, a 6= b;

In group 2, {P̄ab, P̄ba} = {0, 3} for two pairs ab ∈ A × A, a 6= b, {P̄ab, P̄ba} = {3, 0} for two
pairs ab ∈ A×A, a 6= b, for one pair ab ∈ A×A, a 6= b, {P̄ab, P̄ba} = {2, 1}, and for the last pair
ab ∈ A×A, a 6= b, {P̄ab, P̄ba} = {1, 2}.

In group 3, {P̄ab, P̄ba} = {0, 3} for one pair ab ∈ A × A, a 6= b, {P̄ab, P̄ba} = {3, 0} for one
pair ab ∈ A × A, a 6= b, while {P̄ab, P̄ba} = {2, 1} for two pairs ab ∈ A × A, a 6= b, and
{P̄ab, P̄ba} = {1, 2} for the last two pairs ab ∈ A×A, a 6= b;

In group 4, {P̄ab, P̄ba} = {2, 1} for three pairs ab ∈ A×A, a 6= b, while for the other three pairs
ab ∈ A×A, a 6= b, {P̄ab, P̄ba} = {0, 3}.

Each agent can have six different orders. This means that in total 63 = 216 combinations of
orders can be made.

In group 1, all situations where the three agents have the same order are captured (for

example, all agents have preference (a,b,c); then P̄ =


0 3 3

0 0 3

0 0 0

) In all these cases, φ = 0;
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An example of a situation that results in a matrix from group 2 is the following: Agent 1
has order (a,b,c), agent 2 has order (a,c,b) and agent 3 has order (a,c,b) as well. Then P̄ =

0 3 3

0 0 1

0 2 0

. In this group, the orders of the different agents are still relatively close to each other;

This is in correspondence with the outcome for φ for all these matrices:
∑

∀1≤i<j≤m
(p̄ab × p̄ba) = 2;

hence

∑
∀1≤i<j≤m

(p̄ab×p̄ba)

3
4

(n2−1)
= 1

3 .
A situation that results in a matrix from group 3 is for example: agent 1 has order (a,b,c), agent

2 has order (a,c,b) and agent 3 has order (c,a,b). Then P̄ =


0 3 2

0 0 2

1 1 0

.
∑

∀1≤i<j≤m
(p̄ab× p̄ba) =

4, and therefore

∑
∀1≤i<j≤m

(p̄ab×p̄ba)

3
4

(n2−1)
= 2

3 for all these matrices. All the combinations of orders that
result into this polarisation measurement are relatively far spread.

Lastly, an example for a matrix from group 4: agent 1 has order (a,b,c), agent 2 has order

(c,a,b) and agent 3 has order (b,c,a). Then P̄ =


0 2 1

1 0 2

2 1 0

. For all matrices in this group,

∑
∀1≤i<j≤m

(p̄ab × p̄ba) = 6, and therefore

∑
∀1≤i<j≤m

(p̄ab×p̄ba)

3
4

(n2−1)
= 1. This is the highest score that can

be obtained by three agents.
This means that for three agents, regularity is satisfied;
Moreover, neutrality is also satisfied, since combinations of orders will lead to the same

matrices, as long as the ’distances’ between the different pairs are the same.
By construction of this function, different profiles that lead to the same matrix of pairwise

comparisons will always have the same measure of polarisation. Therefore, pairwiseness is
always satisfied;

We leave the additivity constraint in the case of three agents for what it is. Instead, we will
prove that it is not satisfied for more than three agents.

More than three agents For more than three agents, regularity is always satisfied; φ is
always zero when all agents have the same preferred order, since in each pairwise multiplication,
one of the entries is always zero. This means that the sum of these multiplications is always
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zero, hence their sum is also always zero. The denominator is defined in such a way that it is
always equal to the maximum value the numerator can get. Hence, φ is at most 1.

Moreover, for the same reasons as that they were satisfied for three agents, neutrality and
pairwiseness are also satisfied for any number of agents;

However, additivity is not always satisfied. To prove this, we consider four agents.
For four agents, 10 different outcomes for φ are possible. This is because (p̄ab× p̄ba) can be 0,

3 and 4. Since this holds for all three pairs of entries in the upper triangular and the reversed
entries in the lower triangular,

∑
∀1≤i<j≤m

(p̄ab × p̄ba) can be 0,3,4,6,7,8,9,10,11,and 12. Hence, φ

can be 0, 1
4 ,

1
3 ,

1
2 ,

7
12 ,

2
3 ,

3
4 ,

5
6 ,

11
12 and 1.

To prove that the additivity constraint is not satisfied anymore for four agents, we consider a
counterexample:

proof Consider the following situation: we have four agents: agent 1 has preference (a,b,c),
agent 2 has preference (a,b,c), agent 3 has preference (a,c,b) and agent 4 has preference (c,a,b).
Agent 1 and 2 together form profile p, and agent 3 and 4 together form profile q. Then, profile p

creates the following matrix: P̄ =


0 2 2

0 0 2

0 0 0

. According to our formula, φ = 0 for this profile.

For profile q, we get this matrix: P̄ =


0 2 1

0 0 1

1 1 0

. Here, φ = 2
3 . Since these two matrices

are pairwise conflict free, the additivity constraint requires that 1
2φ(p) + 1

2φ(q) = φ(p, q).
Thus, 1

2 × 0 + 1
2 ×

2
3 = 1

3 . However, if agent 1,2,3 and 4 are together in one profile, we

get P̄ =


0 4 3

0 0 2

1 2 0

. This gives
∑

∀1≤i<j≤m
(p̄ab × p̄ba) = 7 and

∑
∀1≤i<j≤m

(p̄ab×p̄ba)

3
4

(n2−1)
= 7

12 . This

contradicts additivity.
When the additivity constraint is not satisfied for four agents, this means that it is never

satisfied for more than 6 agents, because we can always find the same counter example: The
four agents from the previous example together form profile p, and the number of m > 2 extra
agents together form profile q. Moreover, all agents in profile q have preferred order (a,b,c). Then
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P̄ =


0 4 3

0 0 2

1 2 0

, Q̄ =


0 m m

0 0 m

0 0 0

 and P̄ + Q̄ =


0 4 +m 3 +m

0 0 2 +m

1 2 0

. Then the following

should hold: 4
4+m ×

7
12 + m

4+m × 0 = (3+m)+2(2+m)

3×( 1
2

(m+4))2
. (3+m)+2(2+m)

3×( 1
2

(m+4))2
= 7+3m

3×( 1
2

(m+4)2)
= 7+3m

1
4
m2+2m+3.75

.
7

12+4x = 7+3m
1
4
m2+2m+3.75

when m = −1.87805, hence for m > 6, this can never be the case. This
proves that the additivity constraint is not satisfied for any number of agents larger than three.
Therefore, to prove that the additivity constraint is not satisfied for more than three agents, we
only still have to prove that it is not satisfied for five agents. We prove this by the following
counter example:

proof Consider the following situation: There are in total 5 agents, agent 1 up to 5. Agent
1,2 and 3 all have preferred order (a,b,c). Agent 4 has preferred order (a,c,b) and agent
5 has preferred order (c,a,b). Agent 1,2 and 4 together form profile p, and agent 3 and 5

together form profile q. Then P̄ =


0 3 3

0 0 2

0 1 0

, Q̄ =


0 2 1

0 0 1

1 1 0

 and P̄ + Q̄ =


0 5 4

0 0 4

1 1 0

.

These two matrices are both pairwise conflict free. This means that the following should hold:
3
5φ(p)+ 2

5φ(q) = φ(p, q). φ(p) = 1
3 and φ(q) = 2

3 , thus φ(p, q) should be equal to 3
5×

1
3 + 2

5×
2
3 = 9

15 .
However, φ(p, q) = 4

9 . This contradicts the additivity constraint.
This completes the proof that the additivity constraint is not satisfied for more than three

agents.

5 Conclusion

In this thesis, we searched for different polarisation expressing measures. We found three
different functions. Function 1 was a first try-out. This function works for two agents, but cannot
be applied to more than two agents. Function 2 is based on the symmetric differences of two
different sets. This concept works perfectly for two agents. For more than two agents, this
function had to be changed slightly to satisfy the additivity constraint. When the symmetric
difference of two sets is replaced by the minimum of two corresponding entries, the function
satisfies all the constraints. The third function was based on the principle matrix of pairwise
comparisons. For two and three agents, this function works fine for all the constraints. For four
agents or more, this function does not satisfy the additivity constraint anymore. Although this
function does not satisfy the additivity constraint anymore, this function still generates reasonable
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results that can be seen as an indication of the polarisation in a particular situation.

6 Suggestions for further research

In this thesis, we restricted ourselves to only three alternatives. But function two and three
probably will work as well for more than three alternatives. The expansion of function two and
three to more than three alternatives could therefore be an interesting topic for future research.
Moreover, we discovered throughout this thesis, that the additivity constraint was the most
restricting constraint. It was very difficult to find function that satisfied this constraint. If this
constraint is removed, or formalised less restricting, there might be new opportunities for our
three or other functions to be explored. Especially our function three would work perfect if the
additivity constraint would be ignored. This can also be interesting for further research. It might
also be interesting to pick up the concept of ’high value’ swaps and a ’low value’ swaps again.
We discussed this topic very briefly when we were defining function 2, and we concluded that
this concept could not be used in this function, but it is possible that it can be applied on other
functions. Lastly, future researchers could maybe try to capture the location of a particular
alternative in the preferred order of an agent. Take for example the following situation: We
have a profile p with three agents, agent 1,2 and 3, and 3 alternatives, a, b and c. Agent 1
has preferred order (a,b,c), agent 2 has preferred order (a,b,c) and agent 3 has preferred order
(b,c,a). Then function 2 gives φ2(p) = 4

9 and function 3 gives φ3(p) = 2
3 . These functions indicate

how difficult it is to make a compromise. But they give no information about which alternative
could be the best compromise. In this case, since two of the three agents have alternative a
as top preference, a logical conclusion seem that activity a will be picked. But agent 3 has this
alternative indicated as least preferred option. Alternative b might be a better option. This idea,
where one does not only check whether a certain alternative is preferred over another alternative
or not, but also check in some way how much a certain alternative is preferred over another, is
not captured in this thesis. However, we think that this is a very interesting concept for future
research.
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