Are you sure you are using the correct model? Model Selection and Averaging of Impulse Responses

Michael Pollmann


Impulse responses can be estimated to analyze the effects of a shock to a variable over time. Typically, (vector) autoregressive models are estimated and the impulse responses implied by the coefficients calculated. In general, however, there is no knowledge of the correct autoregressive order. In fact, when models are seen as approximations to the data generating process (DGP), all models are imperfect and there is no a priori difference in their validity. Hence, a lag length should be chosen by a sensible method, for instance an information criterion.
In Monte Carlo simulations, this paper studies what characteristics influence the optimal autoregressive order when all models are only approximations to the DGP. It finds that the precise coefficients in the DGP, the sample size, and the impulse response horizon to be estimated all influence the mean squared error-minimizing lag length. Furthermore, it evaluates the performance of model selection and averaging methods for estimating impulse responses. Across the characteristics found to be relevant, averaging outperforms model selection, and in particular Mallows' Model Averaging and a smoothed Hannan-Quinn Information Criterion perform best. Finally, the study is extended to vector autoregressive models. In addition to the characteristics relevant in the univariate case, the optimal lag length also depends on which (cross) impulse response is to be estimated. Many issues remain for vector autoregressive models, however, and more work is necessary.

Full Text:



Akaike, Hirotugu. (1974). A new look at the statistical model identification. Automatic Control, IEEE Transactions on, 19(6):716--723. doi:10.1109/TAC.1974.1100705.

Buckland, Steven T., Burnham, Kenneth P., & Augustin, Nicole H. (1997). Model Selection: An Integral Part of Inference. Biometrics, 53(2):603--618. doi:10.2307/2533961.

Burnham, Kenneth P., & Anderson, David R. (2004). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York, NY, second edition. ISBN 0387953647. doi:10.1007/b97636.

Canova, Fabio. (2007). Methods for Applied Macroeconomic Research. Princeton University Press, Princeton, NJ. ISBN 0691115044. URL

Claeskens, Gerda, & Hjort, Nils Lid. (2003). The Focused Information Criterion. Journal of the American Statistical Association, 98(464):900--916. doi:10.1198/016214503000000819.

Claeskens, Gerda, & Hjort, Nils Lid. (2008). Model Selection and Model Averaging. Cambridge University Press, Cambridge, United Kingdom.

Claeskens, Gerda, Croux, Christophe, & Van Kerckhoven, Johan. (2007). Prediction focussed model selection for autoregressive models. Australian & New Zealand Journal of Statistics, 49(4):359--379. doi:10.1111/j.1467-842X.2007.00487.x.

Greene, William H. (2007). Econometric Analysis. Prentice Hall, Upper Saddle River, NJ, sixth edition. ISBN 0135132452.

Hannan, Edward J., & Quinn, Brian G. (1979). The Determination of the Order of an Autoregression. Journal of the Royal Statistical Society. Series B (Methodological), 41(2):190--195. ISSN 00359246. URL

Hansen, Bruce E. (2005). Challenges for Econometric Model Selection. Econometric Theory, 21(1):60--68. doi:10.1017/S0266466605050048.

Hansen, Bruce E. (2007). Least Squares Model Averaging. Econometrica, 75(4):1175--1189. doi:10.1111/j.1468-0262.2007.00785.x.

Hansen, Bruce E. (2008). Least-squares forecast averaging. Journal of Econometrics, 146(2):342--350. doi:10.1016/j.jeconom.2008.08.022.

Hjort, Nils Lid, & Claeskens, Gerda. (2003). Frequentist Model Average Estimators. Journal of the American Statistical Association, 98(464):879--899. doi:10.1198/016214503000000828.

Hjort, Nils Lid, & Claeskens, Gerda. (2006). Focused Information Criteria and Model Averaging for the Cox Hazard Regression Model. Journal of the American Statistical Association, 101(476):1449--1464. doi:10.1198/016214506000000069.

L├╝tkepohl, Helmut. (2007). New Introduction to Multiple Time Series Analysis. Springer, Berlin, Germany. ISBN 3540401725. doi:10.1007/978-3-540-27752-1.

Schwarz, Gideon. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6:461--464. doi:10.1214/aos/1176344136.

Shen, Xiaotong, & Dougherty, Daniel P. (2003). Discussion: Inference and Interpretability Considerations in Frequentist Model Averaging and Selection. Journal of the American Statistical Association, 98(464):917--919. doi:10.1198/016214503000000837.

Sin, Chor-Yiu, & White, Halbert. (1996). Information criteria for selecting possibly misspecified parametric models. Journal of Econometrics, 71(1-2):207--225. ISSN 0304-4076. doi:10.1016/0304-4076(94)01701-8.

Verbeek, Marno. (2012). A Guide to Modern Econometrics. Wiley, Chichester, United Kingdom, fourth edition. ISBN 1119951674. URL



  • There are currently no refbacks.