
Summary

The starting point of the present paper is the Binomial Option Pricing
Model. It basically assumes that thers is only one possible value for the
volatility of the stock price and it gives a unique arbitrage-free price of an
option. This assumption is relaxed in the sense that the occurrence of a
second value for the volatility is supposed to have strictly positive probability.
Then it is no longer possible to find only one arbitrage-free price of the
option; instead some concepts of general arbitrage pricing theory such as
the Fundamental Theorem of Asset Pricing are employed to construct an
interval of arbitrage-free option prices. Subsequently, a natural question to
ask is under which conditions the Binomial Option Pricing Model assuming
deterministic and stochastic volatility respectively agrees on arbitrage-free
option prices. This paper gives a formal answer to that question by showing
that the volatility used to calculate the price in the deterministic setting has
to lie strictly in between the two possible volatilities used when assuming
stochastic volatility. Furthermore, the Binomial Option Pricing Model is
enriched to the Trinomial Option Pricing Model. In the latter model in cases
of both deterministic as well as stochastic volatility an interval of arbitrage-
free option prices is obtained. The question of agreement on arbitrage-free
prices is discussed again and a similar answer to the above situation is
derived. The paper provides illustrations of the theoretical findings along
examples such as European Call Options, Butterfly Spreads as well as Double
Butterfly Spreads.
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2.1 Introduction

A normal person and a professor working at the Mathematical
Finance department take a walk. The normal person suddenly
sees a 100e bill lying around on the street. When the normal
person wants to pick it up, the professor says:”Don’t try to do
that. It is absolutely impossible that a 100e bill is lying on the

street. Indeed, if it were lying on the street, somebody else
would have come and picked it up before you”

[4]

In Financial Mathematics various concepts are devoted to the determi-
nation of asset prices. Derivative securities, which derive their value from
underlying more basic assets, play an important role in this regard. A stock
is a typical example of an asset that is underlying a derivative security. Pre-
sumably one of the most well-known kinds of a derivative securitiy is an
option such as a call or a put. In case of a European call or put option,
its value is completely determined by the underlying’s price at the time of
the option’s expiration. Hence, in order to determine the price of the op-
tion at the time it is written, some knowledge regarding the price of the
stock at maturity is desirable. This is the kernel of the problem: Of course
noone knows the value of a stock at some future date with certainty. For
that reason mathematical tools and models are used to gain knowledge of
the future share price. To this end, some assumptions have to be made
in order to systematize things. An example of such an assumption is how
many different values the stock price can possibly assume at the time of
the derivative’s expiration. Other assumptions refer to the market in which
the assets are traded. A natural question to ask is then what is going to
happen if one (or several) assumptions are modified. Clearly, the results
given by the respective models are going to change. It is seemingly difficult
to decide which assumptions mirror reality best, thus it is of utmost interest
if different models give similar results - this is the central question of the
thesis at hand. It focuses on the Binomial as well as the Trinomial model
for asset pricing and explores what happens to the results if one allows for
more than one volatility. Particular attention is paid to the circumstances
under which the respective models agree on arbitrage-free prices.
The paper is organized as follows: Section 2 introduces some mathematical
concepts that are relevant in the theory of Asset Pricing. Section 3 firstly
derives the Binomial Asset Pricing Model with one possible value of the
volatility and then discusses the case of a second possible value. These sec-
tions will be mainly theoretical in nature. In order to illustrate the concepts a
bit further, section 4 provides several numerical examples and graphs. It will
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be outlined that there is some general pattern regarding agreement and dis-
agreement on arbitrage-free prices throughout all the examples described,
thus section 5 systematizes this pattern and provides a proof. Section 6
enriches the Binomial Asset Pricing Model to the Trinomial Asset Pricing
Model ; again the focus is first on the case of one volatility and then it
will be allowed for a second value. Here a lot of theory developed earlier
can be applied. Similar to section 4, section 7 provides various numerical
examples. Readers will see that there is again a general pattern regarding
the no-arbitrage prices when comparing results in cases of deterministic as
well as stochastic volatility, thus section 8 discusses a general case. Finally,
section 9 summarizes and concludes.

2.2 Background Information

2.2.1 The No-Arbitrage Assumption

When referring to an arbitrage opportunity, one usually means the possi-
bility to gain a profit in financial markets with neither taking any risk nor
undertaking a net investment [4]. The “joke” at the beginning of this paper
states the essence of what is called Pricing by No-Arbitrage. The profes-
sor working in the Mathematical Finance department knows that it is not
possible to simply find 100e lying around since this would mean a riskless
profit without net investment. If arbitrage opportunities were possible, ev-
eryone would seek to exploit them as soon as possible, therefore market
forces would make them disappear immediately and bring the market back
to equilibrium. This is the reason why the professor says that someone else
would have already picked up the 100e bill. Hence, assuming the abscence
of arbitrage opportunities when pricing financial assets seems reasonable. In
order to conceptualize things a bit more, consider the finite filtered proba-
bility space (Ω,F,P). Here Ω is the set of all possible future states of nature
and assume |Ω| < ∞. Let ω be a typical element of Ω and suppose that
each future state of the world is assigned a strictly positive probability of
occurrence, i.e. P(ω) > 0. Let Φ denote the linear space of all portfolios
containing primary traded securities only. Suppose φ is a typical element of
Φ. Considering V0(φ) as the cost of setting up the portfolio and letting T
be some later point in time, the idea of No-Arbitrage can be formally stated
as follows [6].

Definition 1. A security pricing model is said to be arbitrage-free if there
is no portfolio φ ∈ Φ for which

V0(φ) = 0, VT (φ) ≥ 0 and P[VT (φ) > 0] > 0 (2.1)
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The No-Arbitrage assumption is maintained throughout this paper.

2.2.2 Complete and Incomplete Markets

The phrase “state of the world” simply means a possible outcome of a
certain process: Consider for instance a share that can assume two possible
values on the next day - then each of these values constitutes a state of
the world. When referring to future states of the world, the time horizon is
to be specified; since this paper is focussing on the pricing of derivatives,
the expiry date of such an asset will make up the time horizon. The value
of a derivative security at expiration is of course contingent on the state of
occurrence. This gives rise to the following definition taken from [1].

Definition 1. A contingent claim

As the payoff of a contingent claim depends on the future states of nature
and since from today’s point of view it is unknown what state is going to
be realized, the determination of the price of a contingent claim is relatively
difficult. Though there are methods on how to determine a unique price
- these methods will be elaborated on in later chapters -, the possibilities
of pricing a contingent claim strongly depend on the market setting. The
following definition of Complete Markets is taken from [1] (here FT is meant
to be an element of the filtration, i.e. FT ⊆ F).

Definition 2. A market is complete if every contingent claim is attainable,
i.e. for every FT -measurable random variable A there exists a replicating
self-financing portfolio φ ∈ Φ such that VT (φ) = A.

In an Incomplete Market it is obviously not possible to find a replicating
strategy such that the cash flows of the contingent claim at maturity can
be reached.

2.2.3 The Fundamental Theorem of Asset Pricing

Consider again the finite filtered probability space (Ω,F,P). Let S denote a
financial market modeled on this space (the interested reader may refer to [4]
for a detailed elaboration on financial markets in general). A lot of theory
in this paper is based on the concept of an equivalent martingale measure
which is formally explained in the following definition taken from [4].

Definition 3. A probability measure Q on (Ω,F) is called an equivalent
martingale measure for S, if Q ∼ P and S is a martingale under Q. i.e.
EQ[St+1|Ft] = St for t = 0, · · · , T − 1.
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In analogy to the just mentioned two authors, define Me(S) to be the
set of all equivalent martingale measures and denote by Ma(S) the set of
all martingale measures. Note that the latter are not necessarily equivalent
to P. Before going on, one should reflect a moment on what is meant
by equivalent. It has been previously defined that ∀ω ∈ Ω it holds that
P(ω) > 0. Thus Q ∼ P if and only if Q(ω) > 0 ∀ω ∈ Ω [4]. Keeping
this concept in mind, one can go on to one of the most essential Theorems
in the field on Financial Mathematics. The Fundamental Theorem of Asset
Pricing, Theorem 1 in this paper, is linking the concepts discussed so far, i.e.
the No-Arbitrage ideas with the theory on martingales, and it is therefore a
powerful tool for determining prices.

Theorem 1. (Fundamental Theorem of Asset Pricing) For S modeled
on (Ω,F,P), the following two statements are equivalent:
(i) S satisfies the No-Arbitrage condition
(ii) Me(S) = ∅

Proof. See [4]

2.3 The Binomial Model

The Binomial Model for Option Pricing has been presented first by [3]. The
basic idea underlying this approach is the replication of a derivative’s payoff
using the marketed assets. Before discussing the Binomial Tree approach,
there are some assumptions that have to be made. Since the matter of
interest in this paper is the price of options in complete and incomplete
markets, it is tried to keep most things as simple as possible. To this end,
the attention is restricted to a two-period economy, let 0 and T=1 be the
two points in time such that ∆t = 1. Moreover, suppose there are only two
traded assets in this economy: A bond with risk-free rate of return rf and
a stock with initial price S0 and two possible prices at time 1. Furthermore,
it is assumed that the shares of the stock can be subdivided for purchase
and sale, the interest rate for investing and borrowing is the same, namely
rf , and there is no bid-ask spread for purchasing and selling the stock. [7].

Notational Remark

In total four models will be presented in this thesis. To make things as clear
as possible, parameters that occur in each model, e.g. the stock price, will
carry the numeration of the model (1 - 4) as superscript. Subscripts refer
to the respective states.
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Figure 2.1: Binomial Tree

2.3.1 Deterministic Volatility

Derivation

Consider the finite filtered probability space (Ω1,F1,P1) and let S1
0 denote

the initial stock price. As there are only two values of the share price possible
at time 1, it follows that |Ω1| = 2. Suppose the values the stock can assume
at time 1 are given by S1

u = S1
0 · u and S1

d = S1
0 · d with u > d. In the

remainder of the paper u is referred to as the up factor and d is called
the down factor. Obviously, in the Binomial setting the stock price has
to either increase or decrease until time 1 with respect to time 0, there is
no possibility that it remains constant. One usually imposes that d = 1

u .
Define u = eσ for some appropriate value σ that is henceforth referred to as
the volatility; the definition comes from the approximation to the Geometric
Brownian Motion [3]. In order to not allow for arbitrage opportunities, the
following inequality must hold:

0 < d < 1 + rf < u (2.2)

Indeed, [7] shows that in the one-period model there is no arbitrage
opportunity if and only if (2.2) holds.

Let p1 ∈ (0, 1) denote the probability of an upward move of the stock
price; then 1−p1 is the probability of a downward move. Figure 2.1 depicts
the situation just described.

In the following a European call option is considered. This option enables
the option holder to buy one share of a stock at time 1 at a predefined
strike price K. Note that the option gives the holder the right and not the
obligation to buy the share. For that reason the holder of course does not
exercise the option if the strike price is above the stock price. Letting C1

1

denote the call’s payoff, this implies that C1
1 = max(S1

1 −K, 0). In light of
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the above definition, the option is obviously a contingent claim dependent
on the value the stock assumes at time 1. The question of interest now is
the determination of the call price at time 0 denoted by C1

0 . The arbitrage
pricing theory idea is the replication of the option’s payoff using the stock
and the bond - this is possible because the market is complete. The following
derivation is mainly based on [7].
Suppose an agent in the economy at hand possesses initial wealth W0 and
she buys ∆0 shares of the stock. Her leftover in terms of cash at time 0 is
then given by

M0 =W0 −∆0 · S1
0 (2.3)

At time 1, the cash position is then given by

M1 = ∆0 · S1
1 + erf · (W0 −∆0 · S1

0) = erf ·W0 +∆0 · (S1
1 − erf · S1

0)
(2.4)

How does the replication of the call work now? There are two possible
values for the call payoff at time 1 that are denoted respectively by C1

1 (u)
and C1

1 (d). The replicating portfolio is supposed to yield the same payoff.
This inevitably leads to the following two replication conditions:

M1(u) = C1
1 (u) (2.5)

M1(d) = C1
1 (d) (2.6)

Plugging in the corresponding values and discounting back to time point 0,
the equations become

W0 +∆0 · (e−rf · S1
1(u)− S1

0) = e−rf · C1
1 (u) (2.7)

W0 +∆0 · (e−rf · S1
1(d)− S1

0) = e−rf · C1
1 (d) (2.8)

Let q1 ∈ (0, 1) and multiply (2.7) and (2.8) by respectively q1 and
(1− q1); this yields

W0 · q1 +∆0 · (e−rf · S1
1(u)− S1

0) · q1 = e−rf · C1
1 (u) · q (2.9)

W0 · (1− q1) + ∆0 · (e−rf · S1
1(d)− S1

0) · (1− q1) = e−rf · C1
1 (d) · (1− q1)

(2.10)
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Add up the previous two equations to obtain

W0 +∆0 · (e−rf · (S1
1(u) · q1 + S1

1(d) · (1− q1))− S1
0) (2.11)

= e−rf · (q1 · C1
1 (u) + (1− q1) · C1

1 (d)) (2.12)

Choosing q1 in such a way that

S1
0 = e−rf · (S1

1(u) · q1 + S1
1(d) · (1− q1)) (2.13)

(2.10) reduces to

W0 = e−rf · (q1 · S1
1(u) + (1− q1) · S1

1(d)). (2.14)

Then q1 can be expressed as follows:

q1 =
erf − d

u− d
(2.15)

Finally, ∆0 is given by:

∆0 =
C1

1 (u)− C1
1 (d)

S1
1(u)− S1

1(d)
(2.16)

To sum up, the replication of the call works as follows: The agent
possessing the initial wealth given by (2.14) buys the amount of shares
given by (2.16) at time 0. Regardless which state of nature, i.e. up or
down, is realized at time 1, the replicating portfolio will have the respective
value, that is either C1

1 (u) or C
1
1 (d). This means that the agent has hedged

the short position in the derivative [7]. Hence, the call price at time 0, C1
0 ,

is to obey the following price:

C1
0 = e−rf · (q1 · C1

1 (u) + (1− q1) · C1
1 (d)) (2.17)

It is worthwhile to have a closer look at the q1 as given by (2.15). Note
that (2.2) implies that q1 is larger than zero. It has been multiplied by
respectively q1 and (1 − q1). Since their sum is one and the fact that q1

is positive suggests to consider it as a probability. Of course it is not the
actual probability that one particular state occurs as shown on the branches
in Figure 2.1, but it is called the risk-neutral probability [7]. Hence one



2.3. THE BINOMIAL MODEL 41

may refer to (2.17) as the risk-neutral valuation formula. Note also that
the actual probabilities do not appear in this equation.

At this stage it seems reasonable to link the above derivation to the
theoretical concepts introduced in section 2. In equation (2.13), q1 and (1−
q1) fulfill the definition of a martingale measure for the stock price process.
Since the two probabilities are by definition strictly between 0 and 1, they are
equivalent to the actual probabilities leading to the upward and downward
movement of the stock price. In view of the Fundamental Theorem of Asset
Pricing, this implies that there are no arbitrage opportunities in the market.
Under the martingale measure Q1 equivalent to P1, the discounted expected
call option payoff at time 1 yields an arbitrage-free price at time 0. Hence,
(2.17) can be restated as

e−rf · EQ1 [C1
1 ] = C1

0 (2.18)

Note that the probability measure Q1 is also referred to as risk-neutral
measure. For simplicity’s sake the remainder of this paper assumes rf = 0.

Internal Summary

The idea just discussed is the following: The call option value at time 1
can be replicated by trading the stock and the bond, so its value is a linear
function in the span of the stock price and the bond price at time 1. For
that reason the value of the call at time 0 should be the corresponding
linear combination of the stock and the bond price at time 0. Since the
no-arbitrage condition implies the existence of a martingale measure under
which the stock price process is a martingale (and the bond price of course
as well), this measure can be used to price the call.

2.3.2 Stochastic Volatility

Although the discussion in the previous section has been subsumed under the
tile “Deterministic Volatility”, not much emphasis has been lain on volatility.
So far, it has been assumed that there is one and only one volatility σ
of the stock price. Consider in the following the finite filtered probability
space (Ω2,F2,P2) and assume that for α ∈ (0, 1), P2(σ = σ1) = α and
P2(σ = σ2) = 1−α. Moreover, suppose without loss of generality σ1 < σ2.
Under this assumption the volatility is obviously no longer deterministic but
stochastic. In the binomial model discussed so far, this means that at time
1 there are four possible values the share price can assume, namely
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1. S2
0 · eσ1

2. S2
0 · e−σ1

3. S2
0 · eσ2

4. S2
0 · e−σ2

It is still the aim to price the European call with strike price K. As
|Ω2| = 4 and since there are only two marketed assets, it is no longer possible
to entirely replicate the payoff pattern of the call at time 1, therefore the
market is incomplete now. Thus, when pricing the call, one does no longer
obtain a unique price.

The no-arbitrage boundaries

The main question now is the description of the possible call prices. A
reasonable way to do so seems to be the application of the Arbitrage Pricing
Theory discussed previously. To this end, define S2 as the stock price process
under the stochastic volatility and let Q2 be a martingale measure equivalent
to the actual probability measure P2 such that S2 is a martingale under Q2.
In the following, q2j is referred to as the risk-neutral probability leading to
state j, 0 ≤ j ≤ 4. Adopting the approach used in the previous section, an
arbitrage-free call price at time 0, here denoted by C2

0 , is the expectation of
the call’s payoff at time 1 under Q2. Let c2j denote the call’s payoff in state
j. Then

W := {
4
j=1

q2j · c2j |
4
j=1

q2j = 1 and
4
j=1

q2j · s2j = S2
0 where q2j > 0} (2.19)

describes the set of all possible arbitrage-free prices of the call. Note
that W is a subset of R. It is straightforward to show that W is convex:
Let Q2

a and Q2
b be two martingale measures equivalent to P2 such that

EQ2
a
[S2] = S2

0 (2.20)

EQ2
b
[S2] = S2

0 (2.21)

and note that for λ ∈ (0, 1) the following statement holds true:
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EλQ2
a+(1−λ)Q2

b
[S2] = λ · S2

0 + (1− λ) · S2
0 = S2

0 (2.22)

For that reason this convex combination is an equivalent martingale mea-
sure yielding an arbitrage-free call price as well. Since an entire replication
of the call’s payoff is not possible in this market setting,W is not a singleton
set. In order to get a more precise idea of what W looks like, the following
lemma might be useful.

Lemma 1. A bounded convex set D with |D| > 1 in R is an interval.

Proof. Let D be a convex set in R. Define a := infD and b := supD.
Hence to show: D ∈ {(a, b), [a, b), (a, b], [a, b]}. The latter statement holds
true if and only if (a, b) ⊆ D ⊆ [a, b], In order to show the first inclusion,
let c ∈ (a, b). According to the definition of a and b there are d, e ∈ D such
that a ≤ d < c and c < e ≤ b. Since D is convex, all numbers in between
d and e must be contained in D, thus c ∈ D. Note that the inclusion
D ⊆ [a, b] is true by the definition of a and b.

Lemma 1 obviously implies that W is an interval. [4] show that the
boundaries are not contained in the interval, hence it is open. Interested
readers may refer to pp.24-25 of their book for a detailed discussion. In order
to find the boundaries of the interval for the no-arbitrage price of the call
option, it is convenient to formulate this task as an optimization problem
with constraints. The lower (upper) bound of the interval is obtained by
solving the following minimization (maximization) problem:

max/min
4

j=1

q2j · c2j

subject to
4

j=1

q2j = 1

4
j=1

q2j · s2j = S2
0

q2j > 0 ∀j

(2.23)

Notational Remark

In the remainder of this paper, the model introduced in 2.3.1 is referred to
as model I and the one introduced in the current section, 2.3.2, is named
model II.
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2.4 Numerical Examples I

In order to get some further impressions of the two models discussed so far,
it is convenient to look at some numerical examples. The option price will
be plotted in terms of the volatility, therefore the impacts of deterministic
and stochastic volatility are nicely illustrated.

2.4.1 European Call

The two models are now used to price a European call option. In model I
this is straightforwardly done; denote the price of a call option as a function
of the volatility in model I at time 0 by C1

0 (σ). Using equation (2.17) and
the risk-free probability as defined by (2.15), the following function can be
derived:

C1
0 (σ) =

1− e−σ

eσ − e−σ
·max(S1

0 · eσ −K, 0) +
eσ − 1

eσ − e−σ
·max(S1

0 · e−σ −K, 0)

(2.24)
Note that this function is increasing in the volatility. Consider the following
values for the parameters:

• S1
0 = S2

0 = 10

• K=10

• Possible volatilities in model II: P2(σ = 0.15) = α and
P2(σ = 0.20) = 1− α for some α ∈ (0, 1)

The situation is graphically depicted in Figure 2.2. The numbers in
braces below the stock value in the respective state refer to the correspond-
ing call option payoff.

In order to find the no-arbitrage boundaries of model II, the numbers
have to be plugged in such that the following optimization problem is faced
according to (2.23).

max/min 1.6183q21 + 0q22 + 2.2140q23 + 0q24

subject to
4

j=1

q2j = 1

11.6183q21 + 8.6071q22 + 12.2140q23 + 8.1873q24 = 10

q2j > 0 ∀j

(2.25)
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Figure 2.2: Four States

Denote the solutions by respectively C2
d and C2

u. This problem has
been solved with the help of Aimms 3.12 and the following values have
been obtained: C2

d = 0.7485824851 and C2
u = 0.9966761345. All values

in between the two no-arbitrage boundaries are arbitrage-free prices of the
call in model II. Now it is interesting to investigate the relation between
arbitrage-free prices in model I and model II. Plugging S1

0 = 10 and K=10
into (2.24), the formula for the option price in model I in this example boils
down to

C1
0 (σ) = 10 · 1− e−σ

eσ − e−σ
· (eσ − 1) (2.26)

In Figure 2.3 the horizontal axis measures the volatility and the vertical
axis corresponds to the option value. The two boundaries obtained by solving
(2.25) have been plotted as horizontals and (2.26) is represented by the
ascending line. Obviously both models agree on an arbitrage-free price only
for an interval of volatilities. Looking at the volatilities corresponding to that
interval, it seems that the intersection of the line representing the option
price in model I intersects the two horizontals at volatilities of respectively
0.15 and 0.20. Indeed, (2.26) yields C1

0 (0.15) = 0.74859691 and C1
0 (0.2) =

0.99667995. These values differ from the ones obtained by solving (2.25)
only after several digits (that might be due to calculations performed with
rounded values). However, this observation leads to the question whether
it is in general the case that a price is arbitrage-free in model I as well as
model II only if the underlying volatility in model I is between σ1 and σ2.
The next section provides further insight on that issue.
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Figure 2.3: Example Call

2.4.2 Butterfly Spread

As implied by (2.24), the price of a European call is monotonically increasing
in the volatility. This gives rise to the question whether models I and II also
agree on arbitrage-free prices of an option under the same conditions if the
option price is a decreasing function of the volatility. If they did, the upper
arbitrage-free boundary of model II should be intersected by model I’s option
price at σ1, i.e. at the lower of the two volatilities assumed to be possible in
model II. The most simple way to investigate this by means of an example
would be the construction of a put option; however, testing the observation
on a more complex financial derivative provides some more insight in terms
of generalisability. For that reason a butterfly spread is used. Consider the
following combination of four call options:

• Buy a call with strike K1 = 5

• Sell two calls with strike K2 = 10

• Buy a call with strike K3=15

Moreover, S1
0 = S2

0 = 10 is again assumed. Butterfly spreads are mainly
used by investors who think that large movements in the stock price are
unlikely [5], so the lower the volatility and the closer the terminal stock
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price to K2, the higher the payoff. Thus, if the underlying volatility of
the stock price gets larger, the price of the Butterfly Spread decreases. The
payoff pattern of this construct is represented in Table 2.1 taken from p.257
in [5].

Range Payoff first long Payoff second long Payoff two short Total
ST ≤ K1 0 0 0 0

K1 < ST ≤ K2 ST −K1 0 0 ST −K1

K2 < ST ≤ K3 ST −K1 0 −2(ST −K2) K3 − ST
ST ≥ K3 ST −K1 ST −K3 −2(ST −K2) 0

Table 2.1: Payoff Butterfly Spread

In order to find the price range of the Butterfly Spread in model II, the
payoffs in the four states can be deduced from Table 2.1 by using the pos-
sible stock prices as presented in Figure 2.2. The only difference to the
European call example in the previous section in terms of the optimization
problem is the change of the objective function in (2.23); the call prices
deduced from the Butterfly Spread payoff table are of course inserted. Re-
garding model I, first of all note that the price of the derivative is not a
continuous function of the volatility anymore. For any deterministic volatil-
ity σ, the two possible stock prices at time 1 are found, classified into Table
2.1 and the price of the Butterfly Spread at time 0 is then calculated using
the risk-neutral probabilities. Figure 2.4 visualizes the situation.

The no-arbitrage boundaries yielded by model II are 3.50283503 and
3.006647731, respectively, which are again plotted as horizontals. Looking
closely at the intersection of the prices given by the two models, one can
see that it occurs again at σ1 = 0.15 and σ2 = 0.20. Consistent with
the previously formulated expectation, the upper no-arbitrage boundary of
model II is intersected by model I’s price for the lower volatility. Hence the
observation that model I and II agree on arbitrage-free prices if the volatility
assumed by model I is in between σ1 and σ2 seems to become manifest.
Before it is tried to find a general explanation for this phenomenon, one
more test is done.

2.4.3 Double Butterfly Spread

The two previous examples investigated cases where the price of the deriva-
tive has been (weakly) monotone in the volatility. It might be interesting
to see whether one can make the same observation as before if the price
is increasing for some values of the volatility and decreasing for others. To
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Figure 2.4: Example Butterfly Spread

this end, consider a Double Butterfly Spread: It is simply constructed by
putting two normal Butterfly Spreads “next to each other”. In the example
discussed in the previous subsection, the Butterfly Spread yields the highest
payoff if the terminal stock price is as close as possible to the strike of the
two shorted calls. On the contrary, if one is uncertain between two values
of the final stock price, one can use two Butterfly Spreads in order to target
two values. This way two “peak-profits” are created, hence the price of the
Double Butterfly Spread is not monotone in the volatility. Assume again
that in both models the initial stock price is equal to 10 and consider the
following combination of eight calls making up a Double Butterfly Spread:

• Buy a call with strike K1 = 6

• Sell two calls with strike K2 = 8

• Buy two calls with strike K3 = 10

• Sell two calls with strike K4 = 12

• Buy a call with strike K5 = 14.

The two stock prices targeted in this example are obviously 8 and 10.
The price function of the Double Butterfly Spread in model I (in terms of
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the volatility will) be increasing up to a certain value for σ and decreasing
afterwards. It is certainly possible that the no-arbitrage boundaries given by
model II will be intersected more than once.

Range 1 long K1 2 short K2 2 long K3 2 short K4 1 long K5 Total
ST ≤ K1 0 0 0 0 0 0

K1 < ST ≤ K2 ST −K1 0 0 0 0 ST −K1

K2 < ST ≤ K3 ST −K1 −2(ST −K2) 0 0 0 K3 − ST
K3 < ST ≤ K4 ST −K1 −2(ST −K2) 2(ST −K3) 0 0 ST −K3

K4 < ST ≤ K5 ST −K1 −2(ST −K2) 2(ST −K3)−2(ST −K4) 0 K5 − ST
K5 < ST ST −K1 −2(ST −K2) 2(ST −K3)−2(ST −K4) ST −K5 0

Table 2.2: Payoff Double Butterfly Spread

In order to determine the prices, consider the payoff structure presented
in Table 2.2. Again the stock prices given by Figure 2.2 can be classified
in the just mentioned table in oder to calculate the payoff of the Double
Butterfly Spread in the respective state. These payoffs are then inserted into
the optimization problem as objective function. In model I for any volatility
σ the two possible stock prices are found, the payoffs are determined and
the price is calculated using the risk-neutral probabilities. The situation is
depicted in Figure 2.5. The no-arbitrage boundaries yielded by model II are
1.497164542 and 1.800679869. Intersections of the prices given by the two
models obviously occur at volatilities of 0.15, 0.20 as well as 0.25, where
at σ=0.20 the option price predicted by model I is the highest, thus up to
a volatility of 0.20 the option price is increasing and decreasing afterwards.
The former observation is now partly supported by the fact that intersections
occur at σ1 and σ2, but there is a larger range of volatilities for which
both models agree on arbitrage-free prices. However, the fact that the
phenomenon still occurs in a setting where the option price given by model
I is neither continuous nor monotonically increasing or decreasing in the
volatility gives rise to the conjecture that the observations hold true for the
general case, which will be the topic of the next chapter.
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Figure 2.5: Example Double Butterfly Spread

Internal Summary

Three examples have confirmed that both models I and II agree on an
arbitrage-free price of a derivative security if the underlying volatility σ in
model I is between σ1 and σ2. Thereby it did not matter whether the option
price was not monotone or not continuous in the volatility in model I.

2.5 Generalization and Proof

Before discussing the general case, note that there is an exception: If the
strike priceK of the option is so high that in none of the possible states there
is a positive payoff, both models will certainly yield a price of 0 regardless
whether the volatility in model I is in between the two volatilities assumed
in model II. In the remainder of this paper it is assumed that there is at
least one positive option payoff at time 1 in model II. Again denoting the
price of a European call option in model I by C1

0 (σ), the following theorem
is stated:

Theorem 2. For any European Call option, C1
0 (σ

∗) is an arbitrage-free
price in model II if and only if σ∗ ∈ (σ1, σ2).

Proof. Assume C1
0 (σ

∗) is an arbitrage-free call price in model II. Consider
the maximal price, i.e. the solution to the maximization problem of (2.23).
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Let X2 be a probabaility measure, that is not necessarily equivalent to P2,
under which the stock price process S2 is a martingale. Under X2 denote
the pseudo-probability leading to state j by x2j , 0 ≤ j ≤ 4. Then the former

constraint q2j > 0 becomes x2j ≥ 0 and (2.23) is an instance of a linear
optimization problem having a solution that will be determined by means of
the Simplex Method. Assume without loss of generality that state 1 belongs
to the upward movement of the stock with the underlying volatility σ1 and
state 2 belongs to the corresponding downward movement. Let states 3 and
4 be defined accordingly. Consider the following variables:

• x2j ≥ 0: Primal flow variable

• wj ≥ 0: Primal slack variable

• yj ≥ 0: Dual flow variable

• zj ≥ 0: Dual slack variable

After standardizing (2.23) with the modified constraint that the prob-
ability leading to state j is not strictly larger than zero, the following initial
primal dictionary is obtained:

ξ = x21 · c21 + x22 · c22 + x23 · c23 + x24 · c24 (2.27)

w1 = 1− x21 − x22 − x23 − x24 (2.28)

w2 = −1 + x21 + x22 + x23 + x24 (2.29)

w3 = S2
0 − s21 · x21 − s22 · x22 − s23 · x23 − s24 · x24 (2.30)

w4 = −S2
0 + s21 · x21 + s22 · x22 + s23 · x23 + s24 · x24 (2.31)

(2.32)

Since the slack varibles are partly negative, the primal is infeasible; as
the objective function ξ contains positive factors, the dual is infeasible as
well [8]. For that reason the primal objective function is modified such that
the dual becomes feasible. After solving the articifial problem to optimality,
the actual objective function is re-substituted and the algorithm continues.
Define the auxiliary function ξ as follows:

ξ = −x21 − x22 − x23 − x24 (2.33)

Then the corresponding dual is given by:

−ξ = −y1 + y2 − S2
0 · y3 + S2

0 · y4 (2.34)
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z1 = 1 + y1 − y2 + s21 · y3 − s21 · y4 (2.35)

z2 = 1 + y1 − y2 + s22 · y3 − s22 · y4 (2.36)

z3 = 1 + y1 − y2 + s23 · y3 − s23 · y4 (2.37)

z4 = 1 + y1 − y2 + s24 · y3 − s24 · y4 (2.38)

(2.39)

Choose y4 to enter and z3 to leave the basis:

−ξ = S2
0

s23
+ y1 · (

S2
0

s23
− 1) + y2 · (1−

S2
0

s23
)− z3 ·

S2
0

s23
(2.40)

z1 = 1− s21
s23

+ y1 · (1−
s21
s23
)− y2 · (1−

s21
s23
) + z3 ·

s21
s23

(2.41)

z2 = 1− s22
s23

+ y1 · (1−
s22
s23
)− y2 · (1−

s22
s23
) + z3 ·

s22
s23

(2.42)

y4 =
1

s23
+
y1
s23

− y2
s23

+ y3 −
z3
s23

(2.43)

z4 = 1− s24
s23

+ y1 · (1−
s24
s23
)− y2 · (1−

s24
s23
) + z3 ·

s24
s23

(2.44)

(2.45)

y2 is the only coefficient left in the objective function with a positive
coefficient, thus it enters the basis and z4 might leave:

−ξ = 1 + z3 ·A− z4 ·
s23 − S2

0

s23 − s24
, where A :=

s24(s
2
3 − S2

0)

(s23 − s24)s
2
3

− S2
0

s23
< 0

(2.46)

z1 = 0 + z3 ·B + z4 ·
s23 − s21
s23 − s24

, where B :=
s21
s23

− s24(s
2
3 − s21)

s23(s
2
3 − s24)

> 0

(2.47)

z2 = 0 + z3 · C + z4 ·
s23 − s22
s23 − s24

, where C :=
s22
s23

− s24(s
2
3 − s22)

s23(s
2
3 − s24)

> 0

(2.48)

y4 = 0− z3 · (
s24

s23(s
2
3 − s24)

+
1

s23
) + z4 ·

1

s23 − s24
+ y3 (2.49)

y2 = 1 + z3 ·
s24

s23 − s24
− z4 ·

s23
s23 − s24

+ y1 (2.50)
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(2.51)

The inequalities can be easily verified. As there is no positive coefficient
of a variable in the objective function anymore, the dual, which is feasible,
cannot be further increased. The corresponding primal looks as follows:

ξ = −1− w2 (2.52)

w1 = −w2 (2.53)

w3 = −w4 (2.54)

x23 = −A− x1 ·B − x2 · C + w4 · (
s24

s23(s
2
3 − s24)

) +
1

s23
)− w2 ·

s24
s23 − s24

(2.55)

x24 =
s23 − S2

0

s23 − s24
− x1 ·

s23 − s21
s23 − s24

− x2 ·
s23 − s22
s23 − s24

− w4 ·
1

s23 − s24
+ w2 ·

s23
s23 − s24
(2.56)

Obviously the primal is feasible and cannot be further increased for the
auxiliary objective function, thus it is optimal by the Strong Duality Theo-
rem [8]. It remains to check whether the optimality also holds for the actual
objective function ξ = x21 · c21 + x22 · c22 + x23 · c23 + x24 · c24. To this end, the
equations for x3 and x4 from the final primal dictionary (2.56) are inserted.
By noting the following, some cumbersome calculations can be saved: Since
wj ≥ 0 by definition, w1 = −w2 implies w1 = w2 = 0. The same argument
applies to w3 and w4. Thus they cannot increase the objective function.
When inserting x23 and x24 into ξ, some simple algebra reveals that their
coefficients are not positive, therefore the objective function cannot be in-
creased anymore. Note that the corresponding dual is feasible and can also
not be further increased. For that reason the Strong Duality Theorem im-
plies that the the optimal solution has been determined [8], proving that in
optimality x21 = x22 = 0, i.e. the coefficients belonging to the option payoff
under σ1 are zero. x

2
3 and x

2
4 are obviously larger than zero, thus the prices

given by model I and II must coincide. It follows that ξ = C1
0 (σ2). Going

back to the initial problem and reintroducing the martingale measure Q2

that is equivalent to P2 imposes the stronger constraint q2j > 0. As under

the measure X2 the constraint held with equality in optimum for the prob-
abilities belonging to states 1 and 2, this implies that under Q2 the value
C1

0 (σ2) is not attainable. Since in model I each volatility yields a unique
price and if C1

0 (σ
∗) is arbitrage-free, one can conclude C1

0 (σ2) > C1
0 (σ

∗).
The strict monotonicity of C implies σ2 > σ∗. By a similar line of reasoning
it can be shown that in the minimum x23 = x24 = 0 which will lead to the



54 CHAPTER 2. DERIVATIVE PRICING

conclusion σ∗ > σ1. Hence, if C
1
0 (σ

∗) is arbitrage-free in model II, it must
hold that σ∗ ∈ (σ1, σ2).

Conversely, suppose σ∗ ∈ (σ1, σ2). The application of the Simplex
Method has shown that any arbitrage-free price attainable in model II is
strictly larger than C1

0 (σ1) and strictly smaller than C1
0 (σ2). Since C is

strictly increasing in σ, this implies that C1
0 (σ

∗) is in between these two
values. Therefore C1

0 (σ
∗) is an arbitrage-free price in model II.

Remark

The calculation with the Simplex Method can easily be verified as follows:
The number −A as defined in dictionary (2.51) should correspond to the
risk-neutral probability of an upward move in model I when assuming an
underlying volatility σ2. In other words, −A should be the same as inserting
σ2 into equation (2.15) (rember the assumption rf = 0). Hence, if the
calculation is correct, the following should hold:

−A !
=

1− e−σ2

eσ2 − e−σ2
(2.57)

This is straightforwardly shown:

2.6 The Trinomial Model

In this chapter the Binomial Model is extended to the Trinomial Model. All
the assumptions made so far are maintained except the one that for some
volatility σ there are only two possible values of the share price at time 1.
The Trinomial Model allows the stock price to increase, decrease and to
remain constant. Lots of authors argue that the Trinomial Model therefore
mirrored reality better than the Binomial Model and that it was more ap-
propriate for pricing options. [2] shows that on average the accurary of the
Trinomial Model with 5 time steps is comparable to the Binomial Model
with 20 time intervals. However, in this paper also the Trinomial Model is
just investigated in a two-period economy. The cases of deterministic as
well as stochastic volatility are explored in turn and it is possible to build a
lot on the theory previously discussed.
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Notational Remark

The Trinomial Model with deterministic (stochastic) volatility will be re-
ferred to as model III (model IV).

2.6.1 Deterministic Volatility

Considering the finite filtered probability space (Ω3,F3,P3) and imposing a
deterministic volatility in the trinomial setting, there are three possible future
states, thus |Ω3| = 3. Since only two assets are traded in the market (stock
and bond), the market is incomplete. For that reason it is not possible to
entirely replicate the payoff of a contingent claim in this Trinomial Model,
thus no unique (option) price can be calculated and again an interval is
obtained. The up and down factors employed for the approximation to
the Geometric Brownian Motion might be used again; however, before the
familiar optimization problem can be used to model the situation, it is to
note that the values of the stock in case it goes up or down cannot be
determined by the same up and down factor as in the binomial setting.
Using the previous up factor u = eσ and assuming u · d = 1, [2] shows
that the actual probability leading to the state that the stock price remains
constant is negative. Consider the general case for some λ:

u = eλ·σ (2.58)

Obviously, in the Binomial Model λ=1. In order to produce only positive
probabilities in the Trinomial Model, λ has to be strictly larger than 1 [2].
Many papers simply choose λ =

√
2; this being a common choice and since

it does not matter too much for the topic at hand, this paper also makes

that assumption, thus denote by u = eσ·
√
2 the modified up factor (the

assumption u · d = 1 is kept).
Consider the European call option with strike K. In order to determine the
no-arbitrage boundaries in this model, the same approach as in the Binomial
Model with stochastic volatility is followed. Let Q3 be an equivalent measure
to P3 under which the stock price process S3 is a martingale. Recall that
the Fundamental Theorem of Asset Pricinig implies that the Q3 weighted
average of the call’s payoff at time 1 yields an arbitrage free price at time
0, thus the adjusted optimization problem looks as follows:
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max/min
3

j=1

q3j · c3j

subject to
3

j=1

q3j = 1

3
j=1

q3j · s3j = S3
0

q3j > 0 ∀j

(2.59)

Let the solutions to (2.59) be given by respectively C3
d and C3

u. The
derivation and subsequent discussion of the interval W in section 3.2.1
implies the following corollary for model III:

Corollary 1. For any European call option, any number C3
0 is an arbitrage-

free price of the call in model III if and only if C3
0 ∈ (C3

d , C
3
u).

2.6.2 Stochastic Volatility

Similar to model II, in model IV it is supposed that the volatility can take
either of the two values σ1 and σ2 and assume w.l.o.g. σ1 < σ2. Let the
finite filtered probability space in this case be given by (Ω4,F4,P4). Then,
for some α ∈ (0, 1), P4(σ = σ1) = α and P4(σ = σ2) = 1− α. It follows
that |Ω4|=6. In order to determine the stock prices in case of upward and
downward movements, of course the same up and down factors are used as
in the case of deterministic volatility in the Trinomial Model. Defining Q4 as
usual, the following optimization problem can now be stated immediately:

max/min
6

j=1

q4j · c4j

subject to
6

j=1

q4j = 1

6
j=1

q4j · s4j = S4
0

q4j > 0 ∀j

(2.60)
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Denote here the no-arbitrage boundaries by C4
d as well as C

4
u. In a similar

spirit as for model III, the following corollary regarding the no-arbitrage
interval in model IV can be stated:

Corollary 2. For any European call option, any number C4
0 is an arbitrage-

free price of the call in model IV if and only if C4
0 ∈ (C4

d , C
4
u).

2.7 Numerical Examples II

In this chapter some numerical examples of the results of models III and
IV are provided. During the comparison of model I and II, the output has
been one line and one interval. In the case at hand, the results will of
course be three intervals, namely two intervals yielded by model III with
deterministic volatiltiies σ1 and σ2 and one interval given by model IV with
the two volatilities being stochastic. Particular attention is then paid to the
relation of the boundaries. To this end, a European Call, a Butterfly Spread
and a Double Butterfly Spread are again considered.
Throughout all the following examples it is once more assumed that the
initial stock price in both models is equal to 10, σ1 = 0.15 and σ2 = 0.20.
The solutions to the optimization problems are again determined with the
help of Aimms 3.12.

2.7.1 Description

European Call

Obtaining no-arbitrage boundaries for a European call in models III and IV is
straightforwardly done. Suppose that the strike price of the call is given by
K = 10. Figure 2.6 shows the possible stock prices and the corresponding
call option payoff in the braces below. In order to determine the two no-
arbitrage intervals from model III, the “upper part” of Figure 2.6 is put
into problem (2.59) and the same is subsequently done with the “lower
part”. To obtain the no-arbitrage boundaries of model IV, all the values
shown in Figure 2.6 are inserted into problem (2.60). The results are given
in Table 2.3. The first row displays the no arbitrage boundaries yielded
by model III for a deterministic volatility of 0.15, the second one shows
the corresponding results for a volatility of 0.20 and the final row contains
the boundaries given by model IV assuming a stochastic volatility. On a
first glance the lower bounds seem to be unrealistically low, but extracting
the corresponding solutions from Aimms and checking the results manually
showed that all the constraints are met and the calculated value is correct.
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Figure 2.6: Six States

The upper bound of model III with σ=0.20 is the highest among all the upper
bounds. Since the call is increasing in the volatility, it makes sense that this
upper bound is larger than the one obtained assuming σ=0.15. The upper
bound yielded by model IV lies in between. Likewise it is reasonable that
the lower bound for σ=0.15 is the lowest among all lower bounds though
they are all relatively close to each other.

Volatility Regime Lower Bound Upper Bound
σ = 0.15 1.0566912 · 10−6 1.05669
σ = 0.20 3.269 · 10−6 1.40485999
Stochastic 4.375 · 10−6 1.4048579

Table 2.3: Boundaries Call

Butterfly Spread

In this part the models are applied to pricing a Butterfly Spread that has the
same setup, two long calls and two short calls with the same strike prices,
as is the one described in section 4.2. In order to determine the payoff at
time 1, the stock prices shown in Figure 2.6 can be classified into Table 2.1
and then the values are easily deducible. Adapting the objective functions
in (2.59) and (2.60), one obtains the upper and lower bounds for the
price of the Butterfly Spread shown in Table 2.4. Recall that the Butterfly
Spread’s price is decreasing in the volatility, therefore it does not come as
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a surprise that the upper bound for σ=0.15 is the highest among all upper
bounds. This also explains why the lower bound obtained by imposing a
deterministic volatility of σ=0.20 yields the lowest among all lower bounds
where the one obtained by using model IV is slightly higher. In the previous
example when the option price has been increasing in the volatility, all the
lower bounds were clustering; in this case all the upper bounds are very close
to each other.

Volatility Regime Lower Bound Upper Bound
σ = 0.15 2.888618 4.9999957
σ = 0.20 2.19028 4.99999
Stochastic 2.190284 4.999991

Table 2.4: Boundaries Butterfly Spread

Double Butterfly Spread

Finally the two models are used to determine the no-arbitrage boundaries of
a Double Butterfly Spread and the same construction is used as in section
4.3. To this end, the stock values displayed in Figure 2.6 are compared to
the payoff pattern described by Table 2.2 and inserted into problems (2.59)
as well as (2.60). Table 2.5 summarizes the results (the lower bounds have
been verified again). The upper bound for a volatility of σ=0.15 is the
highest although the corresponding value of model IV is only slightly lower.
The lower bounds are all clustering slightly above zero; here the value for
the deterministic volatility of σ2 is the lowest among all lower bounds.

Volatility Regime Lower Bound Upper Bound
σ = 0.15 1.788654 · 10−6 1.7886519
σ = 0.20 1.190277 · 10−6 1.190276
Stochastic 6.599678 · 10−6 1.7886488

Table 2.5: Boundaries Double Butterfly Spread

2.7.2 Observation

When discussing the exampels for models I and II, the observation regarding
the intersection at the volatilities σ1 and σ2 was easily made. In this case
finding a general pattern is somehow more difficult, but looking closely at
Tables 2.3, 2.4 and 2.5, one can see that the lower bound obtained by
using model IV is always above one of the lower bounds yielded by model
III. To be more precise, in the example dealing with the call option, the
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smallest lower bound is given by model III for σ = 0.15 and model IV’s
lower bound is larger. In the second example, the minimal lower bound is
of course given by model III for σ = 0.20 and model IV’s lower bound is
again larger. In the third example, both lower bounds given by model III
are smaller than the one given by model IV. Considering the upper bounds,
the same observation can be made reversed: In the first example, model III
gives the highest upper bound for σ=0.20 and the corresponding value of
model IV is slightly lower. In case of the Butterfly Spread, the highest value
is given by III for a volatility of 0.15 and model IV’s upper bound is a bit
below. Regarding the Double Butterfly Spread, model IV can also not reach
the largest upper bound. As this phenomenon occurs throughout examples
where the derivative security’s price has been increasing, decreasing and
not monotone in the volatility, this gives rise to the conjecture that model
IV’s no-arbitrage boundaries are less extreme than the boundaries yielded by
model III when the same values for the volatilities are assumed. The next
chapter sheds some further light on this question.

2.8 General Case European Call

In the general discussion, attention is restricted to the no-arbitrage bound-
aries obtained when pricing a European call. Similar to chapter 5, a mar-
tingale measure that is not necessarily equivalent to the actual probability
measure is used in order to to find an analytical solution. Thus, let X3 be
defined such that the stock prices process in model III is a martingale under
this measure and define X4 for model IV accordingly. Recall that under a
martingale measure that is not necessarily equivalent to the original proba-
bility measure, the probability leading to state j, 0 ≤ j ≤ 6, is not forced to
be strictly larger than zero.
Consider model IV in the following. Assume w.l.o.g. that state 1 refers to
the stock price going up, state 2 to no change and state 3 to a decrease
under σ1; let the other states for σ2 be labeled in a similar manner. If it
was possible to show that in the maximum the probabilities leading to states
1,2 and 3 were equal to zero, this would prove that model IV and model III
would yield the same value for a deterministic volatility of σ2. The Simplex
Algorithm is used to find the maximum. To this end, define the following
variables:

• x4j ≥ 0: Primal flow variable

• wj ≥ 0: Primal slack variable

• yj ≥ 0: Dual flow variable
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• zj ≥ 0: Dual slack variable

After standardizing, the following primal dictionary is obtained:

ξ = c41 · x41 + c42 · x42 + c43 · x43 + c44 · x44 + c45 · x45 + c46 · x46 (2.61)

w1 = 1− x41 − x42 − x43 − x44 − x45 − x46 (2.62)

w2 = −1 + x41 + x42 + x43 + x44 + x45 + x46 (2.63)

w3 = S4
0 − s41 · x41 − s42 · x42 − s43 · x43 − s44 · x44 − s45 · x45 − s46 · x46 (2.64)

w4 = −S4
0 + s41 · x41 + s42 · x42 + s43 · x43 + s44 · x44 + s45 · x45 + s46 · x46 (2.65)

(2.66)

The slack variables are obviously partly negative, thus the primal is infea-
sible. Taking the corresponding dual, the same observation would be made
since the primal objective function contains positive values. To overcome
this problem, an auxiliary objective function is defined, the problem is then
solved to optimatility and later on the initial objective function has to be
re-substituted. Suppose the temporary objective function is given by:

ξ = −x41 − x42 − x43 − x44 − x45 − x46 (2.67)

Then the following dual dictonary is of course feasible:

−ξ = −y1 + y2 − S4
0 · y3 + S4

0 · y4 (2.68)

z1 = 1 + y1 − y2 + s41 · y3 − s41 · y4 (2.69)

z2 = 1 + y1 − y2 + s42 · y3 − s42 · y4 (2.70)

z3 = 1 + y1 − y2 + s43 · y3 − s43 · y4 (2.71)

z4 = 1 + y1 − y2 + s44 · y3 − s44 · y4 (2.72)

z5 = 1 + y1 − y2 + s45 · y3 − s45 · y4 (2.73)

z6 = 1 + y1 − y2 + s46 · y3 − s46 · y4 (2.74)

(2.75)

y4 enters the basis, then z4 may leave:

−ξ = S4
0

s44
+ y1(

S4
0

s44
− 1) + y2(1−

S4
0

s44
)− z4 ·

S4
0

s44
(2.76)



62 CHAPTER 2. DERIVATIVE PRICING

z1 = 1− s41
s44

+ y1(1−
s41
s44
) + y2(

s41
s44

− 1) + z4 ·
s41
s44

(2.77)

z2 = 1− s42
s44

+ y1(1−
s42
s44
) + y2(

s42
s44

− 1) + z4 ·
s42
s44

(2.78)

z3 = 1− s43
s44

+ y1(1−
s43
s44
) + y2(

s43
s44

− 1) + z4 ·
s43
s44

(2.79)

y4 =
1

s44
+
y1
s44

− y2
s44

+ y3 −
z4
s44

(2.80)

z5 = 1− s45
s44

+ y1(1−
s45
s44
) + y2(

s45
s44

− 1) + z4 ·
s45
s44

(2.81)

z6 = 1− s46
s44

+ y1(1−
s46
s44
) + y2(

s46
s44

− 1) + z4 ·
s46
s44

(2.82)

(2.83)

Since y2 is the only variable with a positive coefficient left in the objective
function, it enters the basis and z6 might leave:

−ξ = 1 + z4 ·A− z6 ·
s44 − S4

0

s44 − s46
with A :=

s46(s
4
4 − S4

0)

s44(s
4
4 − s46)

− S4
0

s44
< 0

(2.84)

z1 = z4 ·B − z6 ·
s41 − s44
s44 − s46

with B :=
s46(s

4
1 − s44)

s44(s
4
4 − s46)

+
s41
s44

> 0

(2.85)

z2 = z4 · C − z6 ·
s42 − s44
s44 − s46

with C :=
s46(s

4
2 − s44)

s44(s
4
4 − s46)

+
s42
s44

> 0

(2.86)

z3 = z4 ·D − z6 ·
s43 − s44
s44 − s46

with D :=
s46(s

4
3 − s44)

s44(s
4
4 − s46)

+
s43
s44

> 0

(2.87)

y4 = −z4 · E + z6 ·
1

s44 − s46
+ y3 withE :=

s46
s44(s

4
4 − s46)

+
1

s44
> 0

(2.88)

z5 = z4 · F − z6 ·
s45 − s44
s44 − s46

with F :=
s46(s

4
5 − s44)

s44(s
4
4 − s46)

+
s45
s44

> 0

(2.89)

y2 = 1 + y1 + z4 ·
s46

s44 − s46
− z6 ·

s44
s44 − s46

(2.90)
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The inequalities can be easily verified. Note that there is no variable
with positive coefficient in the above objective function anymore. Since the
dictionary is feasible, it has been solved as far as possible. The next thing
to do is the translation back into the primal:

ξ = −1− w2 (2.91)

x44 = −A− x41 ·B − x42 · C − x43 ·D + w4 · E − x45 · F − w2 ·
s46

s44 − s46
(2.92)

x46 =
s44 − S4

0

s44 − s46
+ x41 ·

s41 − s44
s44 − s46

+ x42 ·
s42 − s44
s44 − s46

+ x43 ·
s43 − s44
s44 − s46

+ w4 ·
1

s44 − s46
+ x45 ·

s45 − s44
s44 − s46

+ w2 ·
s44

s44 − s46
(2.93)

w1 = −w2 (2.94)

w3 = −w4 (2.95)

(2.96)

The above dictionary is feasible and ξ cannot be further increased.
The Strong Duality Theorem implies that the problem has been solved to
optimality [8]. Going back to the initial objective function ξ = c41 · x41 + c42 ·
x42 + c43 · x43 + c44 · x44 + c45 · x45 + c46 · x46, the equations describing x44 and
x46 have to be inserted. In the above final primal, all the slacks are equal
to zero, thus they cannot increase the initial objective function anymore.
Moreover, it can be easily calculated that the coefficients of x41, x

4
2, x

4
3 and

x45 are not positive in ξ when x44 and x46 are inserted, hence ξ cannot be
further increased. Recognizing that the corresponding dual is feasible and
that it can also not be further increased, the maximum for the initial problem
has been found (Strong Duality Theorem).

Note that the minimum value can be found by a completely similar
line of reasoning, thus it is not explicitly reproduced here. However, the
result one obtains is that there is a solution to the minimization problem of
model IV such that x44 = x45 = x46 = 0. Therefore it agrees with model III
on the minimal value if the latter assumes a deterministic volatility of σ1.
The calculations just done prove the following theorem which is going to
summarize this chapter.

Theorem 3. The following two statements hold true:

• The infimum arbitrage-free price of a call in model III with determin-
istic volatility σ1 is equal to the infimum arbitrage-free of a call in
model IV with stochastic volatilities σ1 and σ2
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• The supremum arbitrage-free price of a call in model III with deter-
ministic volatility σ2 is equal to the supremum arbitrage-free of a call
in model IV with stochastic volatilities σ1 and σ2

2.9 Conclusion

This paper has been devoted to the theory of pricing financial deriatives
in cases of deterministic as well as stochastic volatility of the underlying.
Firstly, the Binomial Model with deterministic volatility has been introduced
and a unique price could be obtained. After allowing for a second value of
the volatility, the market setting became incomplete and the description
of a derivative’s price has taken the form of an interval. Some numerical
examples have been discussed from which a general result regarding the
valuation of a European call option has been deduced and subsequently
formally proved. Then attention has been paid to the Trinomial Model, first
in case of deterministic and later under a stochastic volatility. In both cases
only intervals for the derivatives’ prices could be obtained. For illustrational
purposes some examples have been presented; in this case it was also possible
to detect a general pattern: The no-arbitrage boundaries in the Trinomial
Model with deterministic volatility always seemed to be more extreme than
the corresponding boundaries when the volatility has been assumed to be
stochastic. A proof that supremum and infimum of the Trinomial Model
assuming respectively deterministic and stochastic volatility conincide has
been provided. Presumably it is in general the case that under an equivalent
martingale measure the boundaries in model IV are less extreme than in
model III. Investigating and proving this in a formal way is a good point for
conducting further research.
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