
Summary

This paper studies different stochastic mortality models with respect to its
underlying assumptions. The Lee-Carter model, the rank-p SVD approxi-
mation model, the Weighted Least Squares model and the Poisson Bilinear
model are discussed and applied to a Dutch data set. In an empirical anal-
ysis, it is illustrated how to obtain parameter estimates and how mortality
rates can be forecasted. In a second step, the paper examines the model’s
underlying assumptions on a residual basis. Several tests are employed test-
ing for normality, homogeneity of variance and autocorrelation. The test
results seem to invalidate the models applicability due to failure in the un-
derlying assumptions. In particular the crucial assumption of observational
independence does not seem to hold, which may result in predicition inter-
vals that are too narrow. Furthermore, a theoretical explanation for auto-
correlation is given and an alternative model (multivariate ARIMA model) is
proposed, that does not only rely on a weaker set of assumptions, but also
requires less computational effort. Comparing the initial models’ estimates
with the estimates of the alternative model, it is concluded that all five
stochastic mortality models tend to deliver similar estimates.
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3.1 Introduction

Over the the last century, life expectancy increased significantly in developed
countries. In particular, the Dutch experienced a great progress in longevity:
whereas a Dutch new-born had a life expectancy of approximately 40 years
in 1900, nowadays the life expectancy at birth is more than double. Ac-
cording to the [United Nations(2012)], the driving factors behind mortality
reduction are medical accomplishments that progress through time. A pro-
found knowledge of how longevity evolves over time is not only useful in the
insurance business, but also for public retirement plans and medical care
systems.

For the sake of prediction, it is tempting to extrapolate this historically
stable trend and to project it to the future. Models that incorporate a
stochastic component seem to be appealing instruments, because they re-
sult in prediction intervals stating how likely possible future values are. A
mile-stone was set by Ronald Lee and Lawrence Carter in 1992: they pro-
posed a stochastic model on the basis of a singular value decomposition
and time series methods. Their model has become the most widely spread
mortality prediction technique that is employed today by the U.S. Bureau
of Census and by the United Nations (Girosi and King, 2007). Since Lee-
Carter’s publication, many researchers followed the stochastic approach and
extended the original Lee-Carter model in various ways. Besides Lee and
Carter, leading researchers in the field of stochastic mortality models are
Wilmoth (weighted least squares), Brouhns et al. (Poisson bilinear) as well
as Renshaw and Haberman (cohort effect). The mayority of the models rely
on the method of maximum likelihood estimation assuming an underlying
distribution and independence.

It is the purpose of this paper to investigate the validity of these un-
derlying assumptions of established stochastic mortality models. In case of
invalidity, the paper aims to explore the underlying causes leading to the
assumptions’ failure. Moreover, it attempts to find an alternative way of
estimation based on a weaker set of assumptions.

The remaining part of the paper is organized as follows: Section 2 cleari-
fies on the notation that is summarized in tabular form. In Section 3, several
models are presented and their estimation and forecasting procedures are
stated. In Section 4, three established models are fit to a Dutch data set
and examined on a comparative basis. The subsequent Section 5 provides
a goodness-of-fit analysis with focus on the models’ residuals. In addition,
a theoretical explanation for dependence is given. Section 6 discusses alter-
native approaches and thereupon presents the multivariate ARIMA model.
Section 7 concludes the paper.
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3.2 Notations

x denotes the age group
t denotes the calendar year
X denotes the total number of age groups
T denotes the total number of calendar years

px(t) denotes the probability to survive
for an individual at age x in year t

qx(t) denotes the probability to die
for an individual at age x in year t

ex(t) denotes the expected remaining lifetime
of an individual at age x in year t

ax denotes an age-specific constant
bx represents the age-specific patterns of change in mortality
kt denotes a time-varying index

Dx,t number of deaths at age x in year t
Ex,t exposure-to-risk at age x in year t

mx,t central death rate at age x in year t (mx,t
def
= Dx,t/Ex,t)

ln(mx,t) (natural-) log-central death rate at age x in year t
µx,t force of mortality at age x in year t

3.3 Stochastic Mortality Models

Mortality models are applied to data sets in order to estimate their model
parameters. Of course, one cannot observe variables continuously, but only
in discrete time. For instance the number of deaths can only be counted
for intervals such as the number of deaths in the year interval [t, t+ 1) and
in the age interval [x, x+ 1), where t and x are integers. Mortality data is
available in tables, most frequently with the dimensions age and time. In
lingo this is called a Lexis Plane. To overcome the discrete time problem,
one needs to interpolate for variables that are continuous such as mortality
rates or the force of mortality µx,t. Therefore, mortality models usually
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assume that the force of mortality is constant within a cell. Having annual
observations at each particular age, cell homogeneity is formally expressed
by:

µx+ξ,t+τ = µx,t (3.1)

for all ξ, τ ∈ [0, 1) and x, t are integers. [Caselli, Vallin and Wunsch(2006)]
show that the central death rate mx,t is a good raw estimator for the latent
variable µx,t. The central death rate mx,t plays an important role in most
mortality models, because many variables of interest depend non-linearly on
the force of mortality µx,t.

3.3.1 Lee-Carter Model

An elegant approach that is simple to implement was proposed by [Lee and
Carter(1992)]. In their original model, they set the central death rates in a
logarithmic relation to its parameters. The model can be written as follows:

ln (mx,t) = ax + bxkt + εx,t. (3.2)

It is note-worthy that in this model ax and bx are age-specific constants
that do not vary with time. In contrast, the parameter kt is a time-varying
index. The greatest advantage of the model is the easiness of parameter
interpretation:

• ax is an age-specific constant; exp(ax) is the general shape of the
mortality schedule

• kt is the time-varying overall mortality index

• bx is the age-specific sensetivity to the time-varying index.

Another advantage of the model is that it prohibits negative central death
rate values; Moreover, the model is quite popular as the computational
effort is rather small compared to other models. Assuming that the error

term εx,t is a white noise process, i.e. εx,t
iid∼ N(0, σ2), one can estimate

the parameters by maximum likelihood. The log-likelihood function is given
by:

l(a,b, k) = −TX

2
ln(2πσ2)− 1

2σ2


x,t

[ln(mx,t)− ax − bxkt]
2. (3.3)

Taking the first order derivatives with respect to ax , bx and kt (for each x
and each t) and setting these equations equal to zero leads to:
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
t

[ln(mx,t)− ax − bxkt] = 0 (3.4)


t

kt[ln(mx,t)− ax − bxkt] = 0


x

bx[ln(mx,t)− ax − bxkt] = 0.

It can be shown that finding maximum likelihood estimates for ax, bx and
kt is equivalent to minimizing the mean squared error. Therefore, consider
(3.3): the constant part does not affect the optimization problem and can
be dropped. Switching the sign of the second term while changing max to
min, it is easy to see that the maximum likelihood estimates for ax, bx and
kt also minimize the mean squared error:

minMSE =

x,t

[ln (mx,t)− ax − bxkt]
2
. (3.5)

As the alert reader might have noticed, there are infinitely many possi-
bilities for ax , bx and kt. Suppose one has found a

∗
x , b

∗
x and k

∗
t that satisfy

(3.5), it is easy to verify that ax = a∗x , b

x = cb∗x and k

∗
t =

k∗t
c for c ∈ R

also solves the set of equations. To ensure identification of the parameters,
Lee and Carter impose the following constraints:


t

kt = 0 (3.6)

and


x

bx = 1. (3.7)

Equation (3.6) combined with equation (3.4) implies that âx =
1
T


t ln (mx,t).

Estimates for bx and kt cannot be found by hand, but require a computa-
tional procedure called singular value decomposition. Lee-Carter estimated
the model parameters in a three step approach:

1. estimate ax by the mean log-rate for each x, i.e. âx =
1
T


t ln (mx,t)

2. estimate bx and kt by a first-rank SVD approximation

3. reestimate k̂t to fit the observed number of deaths.
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The first step is a simple spreadsheet calculation and needs no further ex-
planation. The second step is a pure mathematical procedure. Estimates
for bx and kt can easily be extracted after applying SVD to the de-meaned
log central rate matrix. The detailed description is left to the appendix. In
the third step, Lee and Carter adjust k̂t in an ad hoc procedure to reproduce
each year’s actual number of deaths, i.e.


x

Dx,t =

x

Ex,texp(âx + b̂xk̂t).

They claim that the re-estimation is favorable as it avoids disparity between
predicted and actual number of deaths. In the literature, this step is con-
troversial, because by reestimating one gives up the maximum likelihood
properties of k̂t.

3.3.2 Rank-p SVD Approximation

The rank-p SVD approximation model is a straight-forward extension of
the original Lee-Carter model. [Renshaw and Haberman(2005)] as well as
[Booth, Maindonald and Smith(2002)] altered Lee-Carter’s procedure by
carrying out a second-rank and fifth-rank SVD approximation respectively.
The model can be expressed as follows:

ln (mx,t) = ax +

p
i=1

b(i)x k(i) + εx,t.

Note that the subscripts of the k(i)’s are supressed as they differ for different
values of i. It is common practice to use the SVD order for the k(i) such that
k(1) carries the Lee-Carter time index t. For i = 2, Renshaw and Haberman
set the index to t− x to capture an observed cohort effect. Using a higher
order SVD approximation one can, by construction, explain a higher amount

of variance, however predicting higher order k
(i)
t ’s is difficult as they may

not follow linear patterns.

3.3.3 Weighted Least Squares

[Wilmoth(1993)] proposed another model using the same parameters sug-
gested by Lee and Carter. Instead of minimizing (3.5), he advises to mini-
mize the following equation:


x,t

wx,t [ln (mx,t)− ax − bxkt]
2
.
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The model has two advantages: First, it can fit data sets that are con-
structed for specific death causes. In specific death cause data sets, some
cells maybe equal to zero. To avoid taking the logarithm of zero, one can set
the specific weight equal to zero. Second, it deals with heteroscedasticity
observed in the Lee-Carter model. A common approach in WLS is to choose
the weights equal to the inverse of the sample variance. Presuming that the
number of deaths is exogeneous, Wilmoth proposes the weight wx,t = Dx,t.

3.3.4 Poisson Bilinear Model

The Poisson bilinear model was proposed by [Wilmoth(1993)] based on
[Brillinger’s(1986)] approach to model the number of deaths, a counting
variable, by a Poisson distribution. It is based on maximum likelihood and
can be expressed as follows:

Dx,t
ind∼ Poisson (Ex,tmx,t)

mx,t = exp (ax + bxkt)

Again, the model is overidentified such that the identification constraints
(3.6) and (3.7) are needed. Note that this model allows for a heteroscedastis-
tic error term that is crucial, according to Wilmoth, as the log central death
rate fluctuates more at older ages due to small numbers of absolute deaths.

The parameters ax, bx and kt can be estimated by maximum likelihood.
The log-likelihood function is given by

l(a,b, k) =

x,t

[Dx,t(ax + bxkt)− Ex,texp(ax + bxkt)] + c, (3.8)

where c is some constant. Finding parameters ax, bx and kt that maxi-
mize (3.8) cannot be obtained using common statistical packages such as
Stata or EViews, because a bilinear term is included. [Brouhns, Denuit and
Vermunt(2002)] implemented Wilmoth’s idea using a convenient program
LEM, that is based on the Quasi-Newton method, to solve (3.8).

3.3.5 Forecast

Although [Lee and Carter(1992)] chose a different method of forecasting,
today a conventional approch relies on bootstrapping. This method is ana-
logue to [Brouhns, Denuit and Keilegoml(2005)]’s five step approach.
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• Step 1
generate N bootstrap sample tables

Lee-Carter: ln
�
mnx,t


= âx + b̂xk̂t + εnx,t

Rank-p SVD Approx.: ln
�
mnx,t


= âx +

p
i=1 b̂

(i)
x k̂(i) + εnx,t

WLS: ln
�
mnx,t


= âx + b̂xk̂t + w

1/2
x,t ε

n
x,t

Poisson: Dnx,t ∼ Poisson

Ex,te

âx+b̂xk̂t


• Step 2
for each table n: reestimate the model parameters, i.e. ânx , b̂

n
x and

k̂nt ,

• Step 3
for each n: estimate the ARIMA model and calculate potential values
of knT+s for a pre-specified period [T, T + s]

• Step 4
for each n: calculate the point forecast for the variable of interest

• Step 5
plot theN forecasts in a histogram and select an approximate (1−α)%
- interval

Bootstrapping is not a unique method, but there are various types of boot-
strap schemes. For the Lee-Carter, the rank-p SVD approximation and the
WLS model, one can either resample the models’ residuals or use parametric

bootstrap, i.e. εnx,t
iid∼ N

�
0, σ̂2


. The parametric approach is also suitable

for the Poisson bilinear model, finding Dnx,t by drawing independently from a

Poisson distribution with mean

Ex,te

âx+b̂xk̂t

. Regarding step three, note

that one could allow for different ARIMA models. For instance, given n∗,
one may get an ARIMA(1,1,0) whereas for a given n∗∗ one may estimate
an ARIMA(1,0,2). However, the common approach is that one only rees-
timates the parameters of the determined ARIMA model performed in the
estimation stage. In step four, the variable of interest is not further spec-
ified. Usually, actuarials are interested in the expected remaining lifetime
ex(t), the probability to survive px(t) and/or the net single premium ax(t).
Combining assumption (3.1) with the fact that the central death rate is an
estimator for the force of mortality, [Brouhns, Denuit and Keilegoml(2005)]
state that one can estimate the variables of interest by:
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êx (t) =
1− exp (−m̂x,t)

m̂x,t
+

k>0



k−1
j=1

exp (−m̂x+j,t+j)


 1− exp (−m̂x+k,t+k)

m̂x+k,t+k

p̂x (t) = exp (−m̂x,t)
and

âx (t) =

k>0



k−1
j=1

exp (−m̂x+j,t+j)


 vk

where v is the discount rate.
Generating N table samples is certainly computationally expensive. A

less time-consuming approach was proposed by [Brouhns, Denuit and Ver-
munt(2002)] that avoids the generation of N tables and their model esti-
mation. If the extraction method is based on maximum likelihood, one can
draw N realizations from a multivariate normal distribution of the MLEs
âx, b̂x and k̂t. The question arises how to find variance estimates of such
distributions. [Wilmoth(1993)] argued that variance estimates can be ob-
tained by finding the second derivative of the log-likelihood function. Using
the Delta method and exploiting the fact that MLEs are asymptotic ef-
ficient, the variance estimates can be extracted from the diagonal of the
inverse of the Fisher information matrix. After drawing N realizations from
the approximate multivariate normal distribution of the MLEs, one simply
continues with step three mentioned above.

3.4 Empirical Analysis

In the following section, three of the four stochastic mortality models, dis-
cussed in the previous section, are implemented and set into comparison.
Estimates of the traditional Lee-Carter (with and without the third step),
the WLS and the Poisson bilinear model are calculated and analyzed.

3.4.1 Data

The fitting and forecasting is carried out on the basis of Dutch data. Data
is provided by the [Human Mortality Database(2013)] and can easily be ex-
tracted from its website www.mortality.org. The human mortality database
is a collection of all raw data from the national statistical offices. It pro-
vides Dutch data on central death rates, exposure-to-risk and number of
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deaths for different age and year intervals. The data is available for the
full Dutch population as well as for gender subpopulations. To compare
the three models, a set of Dutch data is selected that ranges from 1850 to
2009 with one-year intervals and covers the age groups from 0 to 98, i.e. 99
age groups. The sexes are combined and gender differences are disregarded.
The selected data set is illustrated in a three-dimensional graph in Figure
3.1.

It is noteworthy, that the time range from 1850 to 2009 incorporates
two world wars (1914-1918 and 1939-1945). Undoubtedly, the world wars
have affected the mortality rates of the Dutch military and civil population.
The question arises how to deal with the effect of the two world wars. This
particular problem will be addressed in subsection 3.4.3.

3.4.2 Estimates

To obtain Lee-Carter parameter estimates for ax, bx and kt, the two/three
step procedure mentioned in subsection 3.3.1 was applied to the Dutch
data set. The reestimation in the third step did not alter the kt estimate
significantly, thus no further distinction will be made with respect to the
Lee-Carter kt estimate. The WLS model was estimated by implementing
[Wilmoth(1993)]’s normal equation algorithm. Different initial values for
ax, bx and kt were tried, all converging to the same result. The Poisson
bilinear model was estimated by a computer program written by Vermunt.

Figure 3.2 shows the ax estimates for all three models across age. It
can be observed that the Lee-Carter, the WLS and the Poisson bilinear
model produce nearly identical ax estimates. Figure 3.3 shows the estimated
relative speed of improvement, b̂x, for the three models across age. Again,
the Lee-Cater, the WLS and the Poisson bilinear model seem to return
smooth and alike estimates that reveal similar movements across age. Figure
3.4 illustrates the estimated value of time-varying index kt from 1850 to
2009 for the Lee-Carter, the WLS and the Poisson bilinear model. It is
remarkable that the WLS and the Poisson estimate nearly imitate each other.
Furthermore, it is striking that all three models exibit peaks in the 1910s
and 1940s. These peaks can be related to the first and second world war,
that either directly (war causalities) or indirectly (e.g. starvation) increased
the mortality rates. Although the Lee-Carter estimate follows the general
movement of the other estimates, it deviates particularily in the most recent
years that give rise to concern regarding forecasting: whereas the Lee-Carter
k̂t follows a moderate decrease since 1986, the Poisson and the WLS model
estimate a sharp decrease in the time-varying index kt. Nonetheless, all
three kt model estimates seem to follow a stochastic process with drift.
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3.4.3 Forecasting kt

In order to forecast the stochastic process of the time-varying index kt an
ARIMA time-series model is appealing. The question arises how to deal
with the disruptions of the two world wars in the Dutch data set. Including
the war years (1914-1918) and (1939-1945), all three kt can be fit by an
ARIMA(3,1,3) model. Sceptism is warranted as the model parameters seem
not to be very stable. Excluding the war observations leads to an improved
fit for all three kt estimates. The estimated ARIMA(1,1,0) models are stable
and are in line with other researchers’ findings. Thus, it is explicitly assumed
that a world war is a high unusual event that will not occur in the near future.
An ARIMA(1,1,0) can be written as follows:

(1− L)(1− φL)kt = µ+ εt, (3.9)

where µ is the drift and |φ| < 1. εt is assumed to follow a white noise pro-
cess. Multiplying out and rearranging terms, equation (3.9) can be rewritten
as:

kt = (1 + φ)kt−1 − φkt−2 + εt. (3.10)

Taking the expected value conditioned on the past and setting t = T + s
one receives

E(kT+s|kT ) = (1 + φ)E(kT+s−1|kT )− φE(kT+s−2|kT ),

which can be used to find point forecasts for kT+s by an iterative procedure
starting with s = 1.

Figure 3.5 shows the point forecasts of the time-varying indices for the
year from 2010 until 2030 for the Lee-Carter, the WLS and the Poisson
bilinear model. All four ARIMA(1,1,0) models have a similar trend, that
are pairwise not statistically different from each other. For the Lee-Carter
estimate the drift is −1.62, for the WLS estimate the drift is −1.64 and the
drift for the Poisson bilinear model is −1.50. Therefore, the forecast values
run almost parallel.

The next step in the routine of forecasting concerns prediction intervals.
One distinguishes between marginal and simultaneous prediction intervals.
Before explaining their differences, one needs another representation of kt.
Applying resubstitution to equation (3.10) one can see that kt can be written
as a linear function of past disturbances, i.e.

kt =

 ∞
i=0

λiL
i


εt. (3.11)
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The λi’s can be found by plugging (3.11) into the LHS and RHS of equation
(3.10) and thereafter matching the coefficients. Following this procedure,
one finds

• λ0 = 1

• λ1 = 1 + φ

• λi = (1 + φ)λi−1 − φλi−2 for i ≥ 2.

These λi’s are components of both, marginal and simultaneous prediction
intervals. [Box and Jenkins(1976)] have examined marginal 1 − α intervals
and constructed the s-step forecast interval the following way:


E(kT+s|kT )± cα/2


s−1
i=0

λ2i

1/2

σε


 ,

where cα/2 is the critical value of the standard normal distribution. Com-
bining the forecast intervals, one obtains an area. [Ravishanker, Hochberg
and Melnick(1987)] reason that this marginal 1 − α prediction interval is
too optimistic as it does not imply that all future forecast values jointly will
be in that defined area with a probability of 1− α. Therefore, Ravishanker
et al. introduced simultaneous ARIMA prediction intervals that are based
on the joint probability distribution of the forecast errors. Its s-step forecast
interval is constructed in the following way:


E(kT+s|kT )± c


s−1
i=0

λ2i

1/2

σε


 ,

where c needs to be approximated. This can be achieved by Monte Carlo
simulation. A more elegant approximation procedure was proposed by [Rav-
ishanker, Hochberg and Melnick(1987)] using the Hunter bound and solving
a simple maximum spanning tree problem with Kruskal’s algorithm. Fig-
ure 3.6 presents the marginal and simultaneous 95% - prediction intervals
of the Lee-Carter, the WLS and the Poisson kt estimates. As expected, the
simultaneous 95% - prediction intervals are wider than the marginal 95%
- prediction intervals. Regarding the Poisson forecast intervals, the differ-
ence between marginal and simultaneous is relatively small. In contrast, the
difference between the marginal and the simultaneous forecast interval of
the Lee-Carter model seems to be much larger. This dissimilar difference in
marginal and the simultaneous forecast intervals is attributed to the higher
variance estimate in the ARIMA model.
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3.5 Goodness of Fit

To test the models’ underlying assumptions, the following section presents
a goodness-of-fit analysis applied to the models estimated in the previous
section. The following goodness-of-fit is in accord with Dowd et al. (2010)’s
residual analysis and is based on four criteria:

1. the fraction of variance explained in each model

2. test for homogeneity of variance

3. test for normality

4. autocorrelation.

3.5.1 Residuals

Because the three models applied differ in their dependent variable, it is
crucial to clearify how the residuals are calculated. The dependent variable
in the Lee-Carter and in the WLS model is ln (mx,t). The fitted value in

these models can be calculated by ˆln (mx,t) = âx + b̂xk̂t. The Lee-Carter
residuals ε̂x,t can be calculated directly by substracting the fitted value from

ln (mx,t). Regarding the WLS, one additionally needs to divide by w
1/2
x,t

after substracting. In reference to the assumptions stated in subsection
three, the Lee-Carter and the WLS residuals follow a normal distribution.
In contrast, the dependent variable in the Poisson bilinear model is the
number of deaths Dx,t. The fitted value is denoted by D̂x,t and is equal

to Ex,texp(âx+ b̂xk̂t). One possibility would be to standardize the Poisson
residuals by using Pearson’s approach, i.e.

Dx,t − D̂x,t

D̂
1/2
x,t

.

[Pierce and Schafer(1986)] showed that it is more appealing to standardize
using Anscombe’s approach in the case of a Poisson distribution:

D
2
3
x,t − D̂

2
3
x,t +

1
9D̂

− 1
3

x,t

2
3D̂

1
6
x,t

leaving residuals that follow an approximately normal distribution. Figures
?? to ?? give scatter plots of the (standardized) residuals with respect to age
and year in three-dimensional space. In all three models residual outliers can
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Lee-Carter WLS Poisson
99.70% 99.56% 99.03%

Table 3.1: Fraction of Explained Variance

be detected for the world war years 1914−1918 and 1939−1945. Although
the world war years are taken into account via the time-varying index kt
by increasing the general mortality for these time periods, it is clear that
the world wars have affected distinguished age groups in a different way.
Undoubtedly, during war the mortality of people that potentially be drafted
into the army is higher than the mortality of people being out of the age-
range to be called to be recruited. This effect cannot be captured by bx.
Thus, in the subsequent subsections the tests are applied to a subset of the
residuals excluding the war years.

3.5.2 Explained Variance

A straight-forward indicator for the goodness of fit is the fraction of explained
variance. This is calculated by the fitted sum of squares divided by the total
sum of squares, i.e.


x,t(fx,t − f̂x,t)

2


x,t(fx,t − f̄)2

.

Table 3.1 shows the fraction of explained variance. It can be infered that all
three models seem to explain a high proportion of variance in their dependent
variables. Keep in mind that the dependent variable of the Poisson bilinear
model differs from the one of the other two models prohibiting a direct
comparison.

3.5.3 Test for Homogeneity of Variance

All three models imply that the adjusted residual series across ages are
homogeneous with respect to their variance. To test this implication one
can employ [Hartley(1950)]’s variance ratio test for each of the three models.
Given a specific model, the sample variance s2x is calculated for each age
group x. The Hartley’s test statistic is

VH =
max(s2x)

min(s2x)
.
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Lee-Carter WLS Poisson
VH = 28.32 p = 0.000 VH = 27.53 p = 0.000 VH = 2.06 p = 0.041

Table 3.2: Hartley’s Test

Test Lee-Carter WLS Poisson
K.-Smirnov p = 0.000 p = 0.000 p = 0.000
Lilliefors VL = 0.052 VL = 0.058 VL = 0.051

p = 0.000 p = 0.000 p = 0.000
Jarque-Bera VJB = 50786 VJB = 22891 VJB = 85340

p = 0.000 p = 0.000 p = 0.000

Table 3.3: Normality Tests

Under the null hypothesis of homogeneity, the critical values for 5% and 1%
rejection rate, given a 99 x 148 residual matrix (12 war years excluded), are
2.04 and 2.19 respectively. Table 3.2 summarizes the test results. One can
infer that the (standardized) residual series of the Lee-Carter and the WLS
model do not have the same variance. In contrast, the Poisson bilinear model
performs better in this test. Its null hypothesis of homogeneous variance can
only be rejected at a 5% - significance level, but not at a 1% - significance
level.

3.5.4 Normality Tests

The adjusted residuals of the three models can be tested for normality by a
couple of tests. [Park(2008)] enlists a group of tests that are applicable: a
common test is the Kolmogorov-Smirnov test that is based on the distance
between the empirical distribution function and the (normal) cumulative
distribution function. An adaption of the Kolmogorov-Smirnov test is the
Lilliefors test, that does not specify the mean and variance of the normal
distribution. Another common place test is the Jarque-Bera test. Although,
it’s validity is controversial, because it only checks the third (skewness) and
forth central moment (kurtosis), it still serves for indication. Table 3.3 sum-
marizes the test statistic and/or the respective p-value for each test/model
combination. The test results unanimously reject the null hypothesis of nor-
mality for all three models at any conventional significance level. Combining
these results with the results of the test for homogeneity in variance, one
can conclude that the models’ underlying distribution assumptions do not
hold.
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Lee-Carter WLS Poisson
t - Autocorrelation 92.93% 95.96% 97.98%
x - Autocorrelation 91.22% 93.92% 96.62%
t-x - Autocorrelation 86.88% 91.88% 93.75%

Table 3.4: Autocorrelations

3.5.5 Autocorrelation Test

The Lee-Carter, the WLS and the Poisson bilinear model imply that the
residuals are independent. To verify or to invalidate this implication one
can test for serial autocorrelation in the residuals over the time span from
1850 to 2009 for each age group. Although autocorrelation can occur in
higher lag orders, this section examines only the first order lag case by us-
ing [Durbin-Watson(1950)]. In the 99 x 148 residual matrix, one can test
for autocorrelation with respect to three different axes. The first axis is the
calendar year t (horizontal); the second axis is the age x (vertical); a third
axis exists, called cohort, defined by t − x. It refers to the diagonal of the
matrix and was already investigated by [Renshaw and Haberman(2005)].
Table 3.4 shows the rejection rate of the Durbin-Watson test evaluated at
a 1% significance level for all nine model/axis combinations. The null hy-
pothesis can clearly be rejected for all nine model/dimension combinations.
Under the null-hypothesis of no serial correlation in the first order lag, one
would have expected a value around 1%. It can be inferred that all three
residual matrices produced by the different models have serial correlation in
the first order lag in all three axes.

Having a closer look at the autocorrelation-function (ACF) and the par-
tial autocorrelation function (PACF) across age, year and cohort, one finds
that the ACFs decrease linearly, whereas the PACFs are caracterized by pos-
itive peaks in the first lag. This observation suggests that only first-order
autocorrelation is persistent in the residuals, but not at higher lags.

The tests’ results strongly indicate that the assumption of observational
independence, presumed by the models, does not hold. In Figures ?? to ??,
the waving-behavior in the residuals also indicates that autocorrelation is
persistent. The consecutive subsection provides a theoretical explanation
for the observed autocorrelation.

3.5.6 A Theoretical Explanation for Autocorrelation

[Renshaw and Haberman(2005)] also observed a non-random pattern in
the residuals, which they called cohort effect. They argue that the effect
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comes from following the same generation across a cohort. To capture this
effect, they added a bilinear term to the Lee-Carter model. Although this
modification of the Lee-Carter model possibly explains some autocorrelation
across the cohort-axis, it cannot explain why autocorrelation is present across
the age- and the time-axis.

There is a much more intuitive explanation for autocorrelation that is
related to the way how the data is acquired. Figure 8 illustrates seven
individuals drawn into the Lexis Plane with time on the x-axis and age on
the y-axis.

Each individual is represented by a colored line that creates a 45 ◦ angle
with the x-axis. The 45 ◦ angle comes from the fact that an increase in time
by τ goes along with an increase in age by τ . The individuals’ lines do not
coincide, but are parallelly shifted due to different dates of birth. A small
square at the end of an individual’s line denotes the time/age - coordinate
at which his or her death occured. The highlighted square in the center
shows the Lexis Plane cell in which people are aged x in the calendar year t.

Observing one particular individual, say individual A, at each point on

A’s line, A has a certain force of mortality, µ
(A)
x,t . It is rational to assume

that for a sufficently small τ , the force of mortality at time t + τ (when A
is aged x+ τ) is fairly close to A’s force of mortality at time t, i.e.

µ
(A)
x+τ,t+τ ≈ µ

(A)
x,t .

Generalizing this idea to a group G of individuals, one has µ
(G)
x+τ,t+τ ≈

µ
(G)
x,t . Note that five out of the seven individuals, that were observed in the
highlighted square, are again observed in square 2. Renshaw and Haberman
observed exactly this process along the cohort. Moreover, approximately half
of the seven individuals are also observed in square 1 (orange, green, yellow)
and by analogue arguments approximately half are also observed in square 3
(red, purple, turquoise). If a group’s average force of mortality at time t+τ

is well-approximated by µ
(G)
x,t for small τ , then one actually expects first-

order autocorrelation in the data. This effect of following the same group
of people is far more general than Renshaw-Haberman’s cohort effect. Take
note that this effect cannot be captured by the current parameters ax, bx
and kt, since ax only captures the general shape of the mortality schedule,
kt the general decrease of the mortality rates over time and bx only the
sensitivity to this time trend.
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Figure 3.1: Dutch central death rates mx,t
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Figure 3.2: Estimates of parameter ax

Figure 3.3: Estimates of parameter bx
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Figure 3.4: Estimates of parameter kt

Figure 3.5: Point Forecasts of Parameter kt
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(a) Lee-Carter: Marginal 95% - P. I. (b) Lee-Carter: Simultaneous 95% - P. I.

(c) Poisson: Marginal 95% - P. I. (d) Poisson: Simultaneous 95% - P. I.

(e) WLS: Marginal 95% - P. I. (f) WLS: Simultaneous 95% - P. I.

Figure 3.6: 95% - Prediction Intervals for kT+s
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(a) Poisson Anscombe residuals

(b) WLS residuals

(c) Lee-Carter residuals

Figure 3.7: (Standardized) Residuals



3.5. GOODNESS OF FIT 91

Figure 3.8: Lexis Plane



92 CHAPTER 3. AUTOCORRELATION IN STOCHASTIC MODEL



Bibliography

[Booth, Maindonald and Smith(2002)] Booth, H., Maindonald, J. and
Smith, L. (2002). Applying Lee-Carter under Condition of Variable
Mortality Decline. Population Studies, Vol. 56, No. 3, 325-336.

[Box and Jenkins(1976)] Box, G. E. P., and Jenkins, G. M. (1976). Time
Series Analysis Forecasting and Control. San Francisco: Holden-Day.
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