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Abstract

Impulse responses can be estimated to analyze the effects of a shock to a variable over
time. Typically, (vector) autoregressive models are estimated and the impulse responses
implied by the coefficients calculated. In general, however, there is no knowledge of the
correct autoregressive order. In fact, when models are seen as approximations to the data
generating process (DGP), all models are imperfect and there is no a priori difference in
their validity. Hence, a lag length should be chosen by a sensible method, for instance an
information criterion.

In Monte Carlo simulations, this paper studies what characteristics influence the optimal
autoregressive order when all models are only approximations to the DGP. It finds that
the precise coefficients in the DGP, the sample size, and the impulse response horizon
to be estimated all influence the mean squared error-minimizing lag length. Furthermore,
it evaluates the performance of model selection and averaging methods for estimating
impulse responses. Across the characteristics found to be relevant, averaging outperforms
model selection, and in particular Mallows’ Model Averaging and a smoothed Hannan-Quinn
Information Criterion perform best. Finally, the study is extended to vector autoregressive
models. In addition to the characteristics relevant in the univariate case, the optimal lag
length also depends on which (cross) impulse response is to be estimated. Many issues
remain for vector autoregressive models, however, and more work is necessary.

1 Introduction

The study of impulse response functions is of importance to many areas, for instance within
macroeconomics. Governments and central banks might attempt to predict the effects of
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their policies on the economy. For this purpose, vector autoregressive models are oftentimes
estimated to analyze the dynamics behind the underlying economic variables. To understand
the effect that a shock to one variable has over time on the system of variables studied, impulse
response functions can be estimated. Unfortunately, however, many issues remain in this
estimation.

This paper focuses on what order of an autoregressive model should be chosen to minimize
the mean squared error of the resulting estimator for the impulse response. Furthermore, it
compares the performance of various model selection and averaging techniques for estimating
impulse responses in a Monte Carlo study. Lastly, it offers preliminary insights into the study of
these issues for vector autoregressive models.

In a brief paper, Hansen (2005) discusses challenges to model selection, focusing as an
example on the model also used in this paper. He criticizes the common assumption that the true
data generating process is among the candidate models for model selection, and advocates the
use of selection methods specific to the purpose of the selected model. The Focused Information
Criterion (FIC), developed by Claeskens and Hjort (2003), is such a method, asymptotically
selecting the model that minimizes the mean squared error of the estimator for the parameter of
interest. Claeskens et al. (2007) justify and demonstrate its use in the setting of this paper.

When no candidate model is the true DGP, however, selecting one such model that is
known to be incorrect might be prone to a form of overfitting. As an alternative, estimates
of different models can be pooled and averaged based on a prespecified rule, for instance
using smoothed information criteria. Claeskens and Hjort (2008) provide a detailed theoretical
treatment of information criteria (IC), in particular the FIC, and smoothed IC. In a simulation
study of forecasting quality, Hansen (2008) evaluates further averaging techniques.

The remainder of this paper is structured as follows. Section 2 presents some theoretical
background on the time series models used and the calculation of the impulse response functions.
Sections 3 and 4, respectively, offer an overview of the model selection and the averaging criteria
employed. In section 5, the results of the Monte Carlo study are presented and their implications
discussed. Section 6 concludes.

2 The Model

This section presents the models considered in this paper. While the true DGP in all simulations
is a (vector) autoregressive moving-average model (ARMA), all candidate models are finite
order (vector) autoregressive (AR) models. Section 2 provides theory for ARMA models, while
section 2 extends this to the VAR setting. Section 2 explains the use of the impulse response
function and gives computational details for (V)ARMA and (V)AR models.
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ARMA(1,1)

The dynamics of an ARMA process depend solely on past values of the variable and shocks,
the autoregressive and moving-average parts, respectively. In general, an ARMA(p, q) model for
the variable y can be written in terms of two polynomials,1(

1−
p∑

i=1

αiL
i

)
yt =

(
1−

q∑
i=1

βiL
i

)
εt,

where Li denotes the lag operator applied i times, and εt ∼ N (0, 1) in this paper. When the roots
of the polynomial

(
1−

∑p
i=1 αiL

i
)

lie outside the unit circle, the process is said to be stationary,
and yt can be written as an infinite sum of the present and past shocks ε with diminishing effects
over time. Similarly, if the roots of the polynomial

(
1−

∑q
i=1 βiL

i
)

lie outside the unit circle, the
process is invertible. One can then write yt as an infinite sum of previous values of y plus the
present shock, εt. An invertible ARMA process is therefore equivalent to an infinite order AR
process.

In this paper, only ARMA(1,1) processes are used as DGP. Such a process takes the form

(1− αL) yt = (1− βL) εt

or, equivalently,

yt = αyt−1 + εt − βεt−1 (2.1)

with the further restriction that the process is stationary and invertible, that is |α| < 1 and
|β| < 1. As mentioned above, invertibility implies that an equivalent AR(∞) process exists. A
special case arises when α = β, and the ARMA(1,1) is white noise, that is yt = εt with no time
interdependencies; see appendix A for details.

In the simulations in this paper, models for y are estimated by AR(p) for finite p, of the structure

yt =

p∑
i=1

γiyt−i + εt.

Hence, when α 6= β and therefore y is an AR(∞) process, none of the candidate models is
the true DGP. This is a deliberate choice to put the econometrician in the usual situation where
all available models are only approximations to the DGP. As some properties of selection and
averaging methods depend on the true model being among the candidate models, this is a

1 All processes considered in this paper are mean 0 and without trend, simplifying formulas.
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situation of interest. In practice, one would likely try to consider (partial) autocorrelation functions
to determine lag orders for AR and MA polynomials. In the vector autoregressive models that
are the ultimate interest of this work, however, such strategies fail (Verbeek, 2012, ch. 9).

Vector Autoregressive Models

Vector autoregressive models (VAR) allow the dynamics of several variables to be modeled
together, taking into account interdependencies. They can be seen as reduced forms of
simultaneous equation models and therefore do not need additional restrictions to deal with
identification issues. The reduced importance of a (potentially flawed) theoretical foundation
has been both praised and criticized. In macroeconomics, VARs have replaced many structural
equation models of the 1950s and 1960s and improved forecasting quality with small-scale
models Greene (2007, ch. 20.6).

The general VAR(p) is similar to the univariate AR(p). Using vector notation, write

yt =

p∑
i=1

Γiyt−i + ut. (2.2)

For simplicity, only bivariate VARs are considered in this paper; that is, the system can be
written as y1,t

y2,t

 =

p∑
i=1

γ11,i γ21,i

γ12,i γ22,i

y1,t−i
y2,t−i

+

u1,t
u2,t

 .
As this corresponds to seemingly unrelated regressions where each equation contains the

same set of explanatory variables, VAR can be estimated consistently and efficiently equation-
by-equation using OLS.

Any VAR(p) can be written as a VAR(1) using the companion matrix. For instance, instead of
a bivariate VAR(2) in the form of equation 2.2, write

y1,t

y2,t

y1,t−1

y2,t−1


=

Γ1 Γ2

I 0




y1,t−1

y2,t−1

y1,t−2

y2,t−2


+



u1,t

u2,t

0

0


, (2.3)
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where I and 0 are the 2x2 identity and zero matrix, respectively. The companion matrix is then

Γ =

Γ1 Γ2

I 0

 .

In this notation, the first two equations correspond to the original VAR(2), while the last two
equations are identities. Technically, however, it is a VAR(1) with four variables. In shorter vector
notation,

zt = Γzt−1 + vt (2.4)

with the obvious definitions of z and v.
Such VARs will be used for estimation. The logical extension of the ARMA(1,1) that is the

DGP in the setting of section 2 is the vector ARMA(1,1) (VARMA). Using lag polynomials,

(I−AL)yt = (I−BL)ut (2.5)

for 2x2 matrices A and B, for which eigenvalues have moduli less than 1 to guarantee stability
and invertibility Lütkepohl (2007, ch. 2 and 11), and ut ∼ N (0, I).

Impulse Responses

The impulse response function gives the effect that a unit-sized shock has on the dependent
variable over time. In particular, when the process is written as

yt = εt + θ1εt−1 + θ2εt−2 + θ3εt−3 + . . . (2.6)

then the impulse response at horizon h is given by θh. For example, figure 1 shows the impulse
response function of the ARMA(1,1) process yt = −0.3yt−1 + εt − 0.5εt−1. For illustration, ε0 = 1

and εt = 0 for all t 6= 0. By plugging these values into the formula, y0, y1, . . . can be calculated
iteratively and are equal to the values of the impulse response function at the corresponding
horizons.

From equation 2.1 one can calculate the impulse response function for general ARMA(1,1)
processes. Appendix A derives a general formula for the impulse response at horizon h as

θh = (α− β)αh−1. (2.7)

Calculating the impulse response from an AR(p) recursively does not yield a simple analytical
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Figure 1 – Example impulse response function for an ARMA(1,1) process, yt = −0.3yt−1 + εt −
0.5εt−1. Here, ε0 = 1 and εt = 0 ∀t 6= 0. The impulse response function gives the effect
of a unit shock on the dependent variable at different horizons.

expression. If, however, the AR(p) is written as a VAR(1), matrix algebra suffices. First, note that

yt =

p∑
i=1

γiyt−i + εt

⇐⇒



yt

yt−1

yt−2
...

yt−p−1


=



γ1 γ2 γ3 . . . γp

1 0 0 · · · 0

0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0





yt−1

yt−2

yt−3
...

yt−p


+



εt

0

0
...

0


⇐⇒ yt = Γyt−1 + εt,
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with symbols properly defined.2 Recall that for an AR(1) process yt = αyt−1 + εt, the impulse
response at horizon h is simply αh, the autoregressive coefficient to the power of the horizon.3

Intuitively, the same holds true for a VAR(1) process. Raising the coefficient matrix to the power
of h, Γh, and taking the coefficient of yt−1 in the equation for yt – that is, the element at position
(1,1) of Γh – gives the impulse response of yt at horizon h. Appendix A shows how this extends
to the impulse responses of a VAR and offers a more formal mathematical derivation.

An alternative to analytical solutions for the impulse responses is based on simulations. With
the (estimated) coefficients, it is simple to set for instance u1,t = 1 and all other errors u = 0 to
make recursive forecasts for y1,t+h, etc. (Canova, 2007, ch. 4). While possibly less elegant, this
is a high-performance alternative especially to the inversion of the lag polynomial in equation 2.5
to find the impulse response of a VARMA process.

This is the simple case for VARs considered in this paper. Oftentimes, however, one finds the
errors of the VAR to be contemporaneously correlated, that is Var [ut] = Σ 6= σ2I in equation
2.2. In that case, interest is usually not in shocks to the error terms in the VAR but instead to
those of a structural VAR. Intuitively, if the error terms of the equations are not independent, one
is unlikely to observe a pure shock to only one variable as shocks for several variables usually
occur together.

General practice is to orthogonalize the errors, for instance through a Cholesky decomposition.
Such methods, however, are not unique, sometimes responsive to the ordering of the variables,
and in general different methods lead to different conclusions (Lütkepohl, 2007, ch. 2). Such
issues and their interplay with model selection and averaging are not covered in this paper and
need to be studied in follow-up work.

3 Model Selection

Since the correct model is typically unknown, various techniques have been developed to select
a model from a set of candidate models. To evaluate several models, the value of an information
criterion can be computed for each. The econometrician then chooses the model with the best
(typically lowest) IC. A range of IC has been developed, and most include a measure of fit based
on a likelihood function and a penalty for the number of explanatory variables used, even though
the theoretical background might differ widely.

This paper considers Akaike’s Information Criterion (AIC), the Bayesian (also called Schwarz)
Information Criterion (BIC), and Hannan-Quinn Information Criterion (HQIC) of this structure.

2 In this context, Γ is also called the companion matrix.
3 A derivation analogous to the ARMA(1,1) case above is possible.
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Another criterion, the Focused Information Criterion (FIC) by Claeskens and Hjort (2003) is
derived differently as an asymptotic estimate of the mean squared error of an estimator.

Akaike’s Information Criterion (Akaike, 1974) in the linear regression setting with normal errors
of this paper can be calculated as

AIC = n · ln σ̂2 + 2 · p

for each model, where n is the number of observations, σ̂2 = RSS
n (the residual sum of squares

divided by n) the MLE for the variance, and p the AR order estimated (Claeskens and Hjort,
2008, ch. 2).4 One then selects the model with the lowest AIC. Here, σ̂2 can be reduced by
estimating a higher order AR model at the cost of increasing p. In its original formulation, the
AIC estimates the loss of information in terms of the expected Kullback-Leibler distance between
the estimated model and the unknown true model. Roughly speaking, choosing the model with
lowest AIC therefore asymptotically corresponds to choosing the model with a probability density
the most similar to that of the true data generating process (Claeskens and Hjort, 2008, ch. 2).

A small sample correction can be based on the realization that the maximum likelihood
estimate σ̂2 is consistent but biased. Burnham and Anderson (2004, ch. 6) advise to use
such a correction in most situations based on better small sample performance and asymptotic
equivalence. Burnham and Anderson (2004, ch. 7) derive this corrected AIC as

AICc = AIC +
2 (p+ 1) (p+ 2)

n− p− 2
.

The Bayesian Information Criterion is originally based on Bayesian ideas Schwarz (1978). In
the Bayesian view, it is constructed to select the model with the highest posterior probability.
However, in practice one typically uses an approximation that removes the need to specify prior
probabilities and strips the BIC of its Bayesian ideas (Claeskens and Hjort, 2008, ch. 3). In the
setting of this paper, it can then be calculated as

BIC = n · ln σ̂2 + p · lnn

and interpreted in the same way as the AIC. After calculating the BIC for all models, the model
with the lowest BIC is chosen.

Some desirable properties of information criteria have been studied in the literature, but
are only stated here. Proofs, further explanations and details can be found in the referenced

4 Technically, this is not the AIC but only the terms that vary from model to model. Claeskens and Hjort (2008) report
the AIC slightly differently, but the formulation chosen in this paper appears to be the standard in the literature.
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papers. The AIC is efficient; that is, it asymptotically minimizes a loss function (Claeskens and
Hjort, 2008, ch. 4). The BIC asymptotically selects the true model if it is among the candidate
models (Burnham and Anderson, 2004, ch. 6), which is not satisfied in this paper. When
the true model is not estimated, both the AIC and the BIC select a model that minimizes the
expected Kullback-Leibler distance to the true model. However, only the BIC will select the
smallest, or most parsimonious, of these “closest” models asymptotically, a property referred to
as consistency (Claeskens and Hjort, 2008, ch. 4).

Roughly speaking, the AIC tries to find the best model taking into account the sample size and
therefore tends to choose larger models when the sample size increases. For consistency on the
other hand, a criterion is expected to choose the correct model irrespective of the sample size;
that is, the criterion should choose the same model even as the sample size increases (Buckland
et al., 1997). To guarantee this, the penalty term needs to increase in n. Specifically, Sin and
White (1996) show that one condition for strong consistency is that the penalty term must grow
at least as fast as ln lnn as the sample size increases. Clearly, the penalty term of the AIC,
which is constant in the sample size n, does not satisfy this, whereas the BIC does.

Another criterion, which was designed for strong consistency, the Hannan-Quinn Information
Criterion (Hannan and Quinn, 1979), was specifically developed in the context of order selection
for autoregressive models. In the setting of this paper, it can be calculated as

HQIC = n · ln σ̂2 + 2 · p · ln lnn.

Interestingly, Hannan and Quinn (1979) originally multiply the penalty term by a constant c > 1

to derive consistency of the criterion, and Claeskens and Hjort (2008, ch. 4) note that the choice
of this c is important for fine-tuning. However, Hannan and Quinn (1979) decide to use c = 1

“since it would seem pedantic, for the values of N used [...], to choose some value of c such as
1.01” (p. 194),5 a choice that appears to have become standard practice and is followed in this
paper.

In the context of lag length selection, AIC will select an AR order at least as large as HQIC,
which selects an order at least as large as BIC, for all but very small samples. Hence, neither
HQIC nor AIC can possibly select fewer lags than BIC. Appendix A gives mathematical details.
Recalling that for stationary processes the impulse responses converge to 0, this allows a
hypothesis about the quality of criteria in the Monte Carlo study of this paper. Typically, a lower
AR order implies that impulse responses are quicker to converge to 0. The relatively low AR

5 In the simulations of Hannan and Quinn (1979), N , the number of observations, is 50, 100, 200, 500, and 1000,
covering roughly the same range as this paper and most other studies.
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order chosen by the BIC might therefore be close in its estimation of the impulse response in
particular at large horizons, as then also the true impulse response is small in absolute value.
For large horizons, the BIC, and to a smaller extent also the HQIC, is therefore expected to
perform relatively better.

A criterion based on a fundamentally different concept is the Focused Information Crite-
rion (Claeskens and Hjort, 2003). It is not based on a likelihood function, but instead an
asymptotic estimate of the mean squared error in terms of bias and variance of a model with
respect to a particular parameter of interest. Hence, based on the same data, the FIC might
suggest a different model for estimating the impulse response at horizon 2 than for horizon 3.
Due to its more complicated nature, no formula is presented here. A detailed description both
of theoretical derivations and practical implementations of the FIC in many different settings,
including linear regression, can be found in Claeskens and Hjort (2008, ch. 6).6 With its adjust-
ment to the parameter of interest, the FIC takes a welcomed approach. Since its rather recent
development, relatively little is known of its performance. One could expect a good performance
in the simulations of this paper, however, as criteria are evaluated based on the MSE of a
parameter of interest, which is minimized asymptotically by the FIC.

4 Model Averaging

An alternative to selecting an individual model is to average the estimates of several models. A
general framework for frequentist model averaging is developed by Hjort and Claeskens (2003).
Shen and Dougherty (2003) describe the choice between model selection and averaging as
a choice between model interpretability and prediction quality. While the selection of a model
might be necessary to test for the significance of parameters or to understand the mechanism
behind a process, Shen and Dougherty (2003) recommend model averaging when prediction
accuracy is the primary concern.

As an analogy to finance, buying a stock with good past performance might not be optimal.
Instead, a typical recommendation is to diversify risk by buying a portfolio of stocks. Model
selection might similarly lead to a model that just by chance fits the sample very well, while
averaging yields better average performance by reducing the risk of this kind of overfitting. The
hypotheses that averaging yields better performance and reduces the risk of large errors are
tested in the Monte Carlo study.

6 The implementation in R used for this paper is available from the author upon request. Gerda Claeskens also
supplies several examples programmed in R on her website. The rather simple formula mentioned by Hansen
(2005) should be treated with care. Simulations for this paper indicate that it does not yield results similar to
Claeskens’. Performance in almost all instances was significantly worse.
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In its simplest form, averaging assigns equal weights (EW) to all models. For K models,
where in this paper K is the maximum AR order plus 1 as an AR(0) model is estimated as well,
each model receives weight wk = 1/K, for k = 1, . . . ,K. The estimate for the impulse response
that is of interest, θ, is then calculated from the estimated impulse responses of all models, θ̂k,
and the weights chosen by the averaging scheme, wk, as

θ̂ =
K∑
i=1

wi · θ̂i.

Hansen (2008) tests the performance of various averaging criteria for making one-step-ahead
forecasts in a simulation study. He finds that Mallow’s Model Averaging (MMA), smoothing based
on AIC (sAIC), and the constrained Granger-Ramanathan weights perform best. In this paper, a
similar set of criteria is used for estimating impulse responses.

Hansen (2007) develops MMA and proves efficiency. Hansen (2008) extends the proof for
stationary time series and shows that it asymptotically minimizes mean squared forecast errors.
MMA chooses weights to minimize the sum of residuals of the weighted models and a penalty
based on the weighted number of parameters used, see Hansen (2007) for details.

Smoothing of information criteria has been proposed by Buckland et al. (1997). They suggest,
based on a Bayesian argument that assumes prior probabilities of the models to be equal, to
give weight wk to each of the K models according to its information criterion value, ICk, as
follows

wk =
exp (−ICk/2)∑K
i=1 exp (−ICi/2)

, k = 1, . . . ,K.

This is an approximation of the Bayes factor (Buckland et al., 1997), and has the desirable
properties that two models with identical IC receive the same weight, a lower (better) IC results
in a higher weight, and weights sum to 1. In his study of forecasting quality, Hansen (2008) uses
this to create the smoothed AIC (sAIC) and smoothed BIC (sBIC). For this paper, a similarly
constructed smoothed HQIC (sHQIC), of which no mention in the literature could be found so far,
is also used. Claeskens and Hjort (2008, ch. 10) propose slightly differently calculated weights
for the smoothed FIC (sFIC), which are also used for the simulations in this paper.7

7 The constant κ in the sFIC of Claeskens and Hjort (2008, ch. 10) is set equal to 1 as in Hjort and Claeskens (2006,
section 8), where the same parameter is called λ.
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5 Results

This section presents results of Monte Carlo studies to evaluate the quality of model selection
and averaging techniques for estimating impulse responses. The general setup is the same
for most studies. First, coefficient values α and β are chosen and the ARMA(1,1) process
yt = αyt−1 + εt − βεt−1 is simulated. From the coefficients, the true impulse response can be
calculated. On each such sample, AR(p) for p = 0, 1, . . . , 12, are estimated and the impulse
response implied by the coefficients calculated. Furthermore, for each candidate AR(p), the
models chosen by the selection criteria are determined. For averaging methods, the implied
impulse responses are averaged accordingly. Then, the squared errors of the estimated impulse
responses are summed over all samples for each selection and averaging method, and the
result is reported as the mean squared error (MSE) of the estimator. For all simulations, 50,000
random samples are used.8

First, results are presented showing characteristics that influence the AR order that should be
chosen for estimating impulse responses. Second, the criteria of sections 3 and 4 are tested
across these characteristics. Third, a brief study shows how the first results extend to vector
autoregressive models. On all these results, the following hypotheses are tested:

1. Averaging outperforms model selection. In particular, the risk of large errors is reduced.

2. Among the traditional information criteria; AIC, BIC, and HQIC; the criteria that tend to
choose more parsimonious models will perform relatively better at large horizons. See
section 3 for an explanation.

3. Since the FIC can choose different models for different tasks, its performance is the most
stable across IR horizons, while other criteria might be good for one horizon but perform
poorly on another.

4. The MSE of the criteria is lower for large samples than for small samples.

5. The characteristics that are relevant in the univariate case that is studied in detail in this
paper are also relevant for vector autoregressive models.

Optimal AR order

For the first study, ARMA(1,1) processes yt = αyt−1+εt−βεt−1 with α and β ∈ {−0.9,−0.7, . . . , 0.9}
are simulated. For each of the 100 pairs of coefficients, samples of 200 effective observations are

8 The number is chosen in accordance with Hansen (2005). For smaller numbers of simulations, occasional changes
in results can be observed.
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Table 1 – MSE-minimizing AR order for estimates of the impulse response at horizon 2 and 6

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

-0.9 0/0 4/5 4/5 3/5 2/3 2/1 2/1 2/3 2/3 12/4

-0.7 8/2 0/0 4/3 2/2 2/1 1/2 1/3 4/3 2/3 2/1

-0.5 9/0 3/0 0/0 1/1 1/1 1/0 1/0 1/0 1/0 2/0

-0.3 8/0 3/0 0/0 0/0 1/0 1/0 2/0 3/0 4/0 1/0

α -0.1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 4/0

0.1 4/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

0.3 1/0 4/0 3/0 2/0 1/0 1/0 0/0 0/0 3/0 10/0

0.5 2/0 1/0 1/0 1/0 1/0 1/1 1/2 0/0 3/0 11/0

0.7 2/1 2/3 2/3 1/3 1/1 2/1 2/2 4/3 0/0 10/2

0.9 11/4 2/4 2/1 2/1 2/1 2/2 2/4 3/5 4/5 0/0

The table can be read as follows: When α = −0.7 and β = −0.5, always selecting the AR(4) model
resulted in a lower MSE for IR(2) than always selecting another AR(p) for p 6= 4. When α = 0.5 and
β = −0.3, the optimal AR order for IR(2) is 1. With the same parameter values, the optimal AR
orders for estimating IR(6) are 3 and 0, respectively.

simulated. This is the same setting as in Hansen (2005). Table 1 shows for each parametrization
the AR order that minimizes MSE of the estimator for impulse responses at horizons 2 and 6.
The table closely resembles table 1 of Hansen (2005) and the conclusion remains the same.
Since the optimal AR order depends on the coefficient values, which are typically unknown, a
selection or averaging technique is needed.

Furthermore, since the optimal AR order also depends on the impulse response horizon,
it appears desirable to use a technique that can select a different AR orders to estimate the
impulse response for each horizon. For example, when α = −0.7 and β = −0.5, the best AR
order to estimate the IR at horizon 2 is 4, whereas at horizon 6 order 3 is best. Figure 2 gives
further evidence. The optimal AR order is plotted on the vertical axis against the IR horizon on
the horizontal axis for different coefficient values. No clear relationship is apparent between IR
horizon and optimal AR order. Only roughly and for relatively large IR horizons, the optimal AR
order appears to go down to 0.

Lastly, the optimal AR order also depends on the sample size as figure 3 illustrates. The
optimal AR order is plotted against sample sizes. Here, the number of effective observations for
estimation of the AR(p) models varies between 25 and 2000. The result is clear, with a larger
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Figure 2 – The impulse response horizon is plotted against its MSE-minimizing AR order for different
DGP. No clear relation is apparent. Lines are visual aids only.

number of observations, the optimal AR order increases.
Intuitively, this appears reasonable. When the number of observations increases, the increase

in the variance of the coefficients when more explanatory variables are used becomes less
severe. Therefore, the variance of the implied impulse response, and thus also the MSE,
decreases when the sample size is increased. However, even with a sample size of 2,000 the
optimal AR order is relatively low. Hence, in practical applications one cannot conclude that the
optimal AR order approaches the true AR(∞).

A notable exception to increasing optimal AR orders is the case of α = β, not shown in figure 3,
so the process is white noise. Then the true IR at any horizon (other than 0) is 0, which is exactly
the value implied by an AR(0). When α = β, the AR(0) is thus always the optimal model.

Overall, one therefore needs to control for at least three characteristics when using AR models
to estimate impulse responses of ARMA(1,1) processes. First, different AR orders perform
best depending on the horizon at which one estimates the impulse response. This appears
to be the most critical point. The FIC and sFIC are the only methods that take into account
the purpose of the model. All other criteria will select the same model or the same weights,
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Figure 3 – Optimal AR order for IR horizon 2 depending on sample size for different coefficient
values. In larger samples, MSE is minimized by higher AR orders. Lines are visual aids
only; no sample sizes between points have been used for estimation.

independent of the IR horizon that is considered. It therefore appears reasonable expect a more
stable performance of the FIC. Second, great differences exist depending on the values of α
and β. Typically, these values are unknown, so a criterion needs to perform well over at least a
large region of coefficient values. Third, it is desirable to know how criteria perform depending
on sample size. This third problem, however, is the smallest. The sample size is known to the
econometrician, so it is possible to use different criteria for small and large samples. Small
sample corrections as for the AICc might improve the performance across sample sizes.

Performance of Criteria

In this section, results of a study of the performance of the model selection and averaging
methods discussed in sections 3 and 4, respectively, along the dimensions investigated in
section 5 are discussed. Clearly, discussing results for all combinations of criteria, coefficient
values, impulse response horizons, and sample sizes is presentationally heavy. The problem
becomes even more severe when multiple measures of performance are considered. This

Marble series (2015) 1: Quantitative methods in Business and Economics 15



Are You Sure You Are Using the Correct Model?

paper therefore focuses almost exclusively on the mean squared error of the criteria to evaluate
performance, as it is also used by Hansen (2005) and Claeskens et al. (2007). The main text
proceeds with illustrative excerpts supporting the overall results, using graphical representations
to allow different perspectives. References to the corresponding parts of the appendices, which
contain more numerical results, are given when appropriate.

First, the behavior of the criteria across coefficient values is studied. Table 2 shows the ratio
of the MSE of AIC and FIC at impulse response horizon 2 with 200 effective observations and
50,000 simulations for each coefficient pair. Hansen (2005) creates a similar table for the ratio of
root MSE of FIC divided by AIC. However, neither values nor interpretation are compatible.9

In table 2, values below 1 imply that the average performance of the models selected by AIC
is better than that of the models selected by FIC for a given pair of coefficient values, whereas
ratios greater than 1 imply that FIC performed better. Here, AIC performs better along the “white
noise diagonal” than FIC. On the first diagonal, α = β, so the true impulse response is 0. All
coefficient pairs on the diagonal lead to the same white noise process, hence the ratios are
almost equal. FIC appears to perform better than AIC when the moving average coefficient is
small in absolute value, and when both coefficients are large in absolute value but of opposite
sign.

The table is visualized in the surface plot of figure 4. Axes and rotation are chosen to replicate
figure 3 of Claeskens et al. (2007) with the white noise diagonal in the center of the figure. The
resemblance is striking10 and supports the conclusion that the ratios reported by Hansen (2005)
are incorrect.

Ratio tables and surface plots can help to compare two criteria directly. To evaluate the
performance of all criteria, appendix B presents tables with individual MSE for impulse response
horizon 2 with 200 effective observations and 50,000 simulations. Table 3 summarizes infor-
mation to compare information criteria with weighting based on them. Clearly, the smoothed
IC outperform selecting an individual model, only for the (s)FIC this conclusion is less strong.
The sIC lead to a lower MSE for almost all coefficient pairs as indicated by the first row. The
following rows compare the criteria and smoothed criteria on average MSE across coefficients
as well as maximal and minimal MSE. On all statistics, the sIC outperform model selection.

In table 4, each column shows the MSE of criteria for one pair of coefficients as a summary
of appendix B. Since the sIC outperform the corresponding IC, these are skipped. The lowest
value in each column is marked with a star and implies that the criterion performed best for
these coefficients. Overall, sBIC performs best when the DGP is white noise, but sHQIC, and

9 Footnote 6 also refers to this problem.
10 The perspective is the same as in Claeskens et al. (2007), with α = φ and β = −η.
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β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

-0.9 0.84 0.81 0.74 0.85 1.02 1.01 0.89 0.97 1.07 1.00

-0.7 0.57 0.85 0.89 0.95 1.00 1.02 1.05 0.99 1.01 1.04

-0.5 0.22 0.73 0.84 0.99 1.02 1.01 1.00 1.19 0.99 1.08

-0.3 0.42 0.45 1.05 0.84 1.18 1.10 0.96 0.77 0.80 1.03

α -0.1 0.95 1.28 1.28 1.45 0.86 1.56 1.29 1.05 0.83 0.52

0.1 0.56 0.86 1.07 1.35 1.55 0.85 1.45 1.27 1.21 0.91

0.3 1.10 0.82 0.80 0.96 1.12 1.16 0.86 1.05 0.46 0.45

0.5 1.09 1.02 1.23 1.02 1.01 1.02 0.98 0.85 0.71 0.22

0.7 1.04 1.02 1.00 1.04 1.01 1.00 0.93 0.90 0.86 0.55

0.9 1.00 1.07 0.98 0.90 1.00 1.03 0.91 0.82 0.79 0.85

Table 2 – Ratio: MSE of AIC divided by MSE of FIC. Values below 1 imply better performance by
AIC, values above 1 better performance by FIC.

AIC AICc BIC HQIC FIC

pct. sIC better 100 100 98 100 57

avg. MSE 8.53 8.52 9.53 8.73 9.69

avg. MSE sIC 8.10 8.06 8.64 8.02 8.22

max. MSE 24.68 24.73 27.03 25.31 29.66

max. MSE sIC 24.63 24.68 26.66 25.14 26.20

min. MSE 2.34 2.20 0.16 0.77 2.58

min. MSE sIC 2.10 1.95 0.13 0.67 3.78

Table 3 – Comparison of information criteria with smoothed information criteria across the 100
coefficient pairs of the DGP for estimating the IR at horizon 2. The first row gives the
percentage of coefficient pairs for which the smoothed IC outperforms the IC. Other
rows allow comparing summary statistics of the MSE across coefficients for each of the
(smoothed) IC. MSE scaled up by a factor of 1,000.
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Figure 4 – Surface plot of table 2 including more coefficient pairs for a smoother figure. 5,000
simulations were run to calculate MSE. In the gray areas, the surface lies above 1 and
AIC produces a higher (worse) MSE than FIC.

MMA show the best overall performance.
Figures 5 and 6 also help to compare the criteria. MSE is plotted against α or β, with the other

coefficient held constant. A low line implies good performance. For graphical reasons, not all
criteria can be shown. Again, sHQIC and MMA show a constantly low MSE.

In a more realistic setting, the econometrician is unaware of the coefficient values and
must choose a selection or weighting method without this information. Another Monte Carlo
study allows comparing the performance of the criteria when in each simulation coefficients are
independent draws from the uniform distribution, α, β ∼ i.i.d. Uniform(−1, 1). Figure 7 shows box
plots of the squared errors of all criteria in the study. Table 5 summarizes this information. Again,
smoothed IC outperform selection based on IC. The difference in means is more pronounced
than the difference in the medians. The last two columns offer a possible explanation: The
number of outliers, i.e. particularly large errors, is reduced significantly. Apparently smoothing
does lower the risk of over-fitting, affirming hypothesis 1. Furthermore, MMA performs best also
in this setting.
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α, β

-0.7,-0.5 -0.7,0.3 -0.3,-0.5 -0.3,0.5 white noise

EW 4.28* 11.38 3.90* 6.57* 3.65

sAIC 5.38 9.87 5.20 8.53 2.13

sAICc 5.40 9.83 5.20 8.54 1.98

sBIC 7.01 9.31 6.03 9.57 0.14*

sHQIC 5.88 9.57 5.44 8.85 0.70

sFIC 5.28 9.70 4.76 8.25 3.82

MMA 5.50 9.29* 4.80 8.41 1.28

Table 4 – MSE of criteria at IR horizon 2 for selected coefficient values, scaled up by a factor of
1,000. A star marks the best criterion in each column. Tables for all coefficient values can
be found in appendix B.

Figure 5 – MSE of criteria for fixed β = 0.1.
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Figure 6 – MSE of criteria for fixed α = 0.5.

median mean 75% quantile 95% quantile

EW 0.0034 0.0108 0.0108 0.0449

AIC 0.0032 0.0087 0.0102 0.0350

sAIC 0.0029 0.0082 0.0093 0.0341

AICc 0.0032 0.0087 0.0102 0.0350

sAICc 0.0029 0.0082 0.0092 0.0337

BIC 0.0037 0.0098 0.0119 0.0397

sBIC 0.0032 0.0089 0.0105 0.0364

HQIC 0.0033 0.0088 0.0104 0.0356

sHQIC 0.0028 0.0082 0.0093 0.0338

FIC 0.0039 0.0100 0.0123 0.0399

sFIC 0.0031 0.0083 0.0096 0.0337

MMA 0.0028 0.0081 0.0091 0.0337

Table 5 – Summary statistics of figure 7, the distribution of squared errors of the criteria.
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Figure 7 – Box plot of squared errors of criteria for IR horizon 2 with 200 observations. The box
covers the second and third quartile, the black line denotes the median. The whiskers
do not extend to cover a fixed quantile but observations within a fixed multiple of the box
interval length.

A similar analysis can be carried out for different IR horizons to evaluate the performance of
criteria. Table 6 reproduces the earlier table 4 for IR horizon 6. Except for the second column,
MSE differ greatly. The complete overview in appendix B suggests that sHQIC and MMA still
perform very well across all coefficient values, and sBIC also shows good performance.

For an easier comparison of criteria across horizons, figure 8 returns to the study with random
coefficients. MSE are plotted against impulse response horizons. The good overall performance
of sHQIC is confirmed, but MMA shows relatively poor performance for large IR horizons.
Furthermore, sBIC performs better for large IR horizons than for small horizons, affirming
hypothesis 2.

The figure also allows evaluating hypothesis 3 about FIC showing a more constant perfor-
mance across horizons. This is not the case; the MSE of FIC varies as much across impulse
response horizons as the MSE of the other criteria. Apparently, selecting different models for
different horizons neither results in lower nor in more stable MSE, so hypothesis 3 is rejected.
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α, β

-0.7,-0.5 -0.7,0.3 -0.3,-0.5 -0.3,0.5 white noise

EW 1.87 9.12* 1.56 3.52 1.43

sAIC 1.50 10.80 0.97 4.62 0.55

sAICc 1.34 10.60 0.80 4.34 0.43

sBIC 0.86 9.83 0.02* 1.54* 0.00*

sHQIC 0.84* 9.78 0.15 2.66 0.04

sFIC 2.46 11.60 2.10 4.74 1.93

MMA 1.29 10.13 0.75 3.53 0.49

Table 6 – MSE of criteria at IR horizon 6 for selected coefficient values, scaled up by a factor of
1,000. A star marks the best criterion in each column. Tables for all coefficient values can
be found in appendix B

Figure 8 – MSE of criteria against impulse response horizons with 200 observations.
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Figure 9 – Comparison of AIC and AICc over sample sizes for IR horizon 2.

Figure 9 compares AIC and AICc, the small sample corrected version of the AIC. Again, the
coefficients in the simulations underlying the figure are drawn from the uniform distribution. The
difference in performance for samples up to size 60 is another indication that size needs to
be considered. Choosing a sample size of 200 for the main results of the paper thus appears
justified for a first study to avoid small sample issues.

The scatterplot in figure 10 furthermore shows how the performance of all criteria improves in
larger samples, affirming hypothesis 4. Within each horizontal interval, the same sample size is
used, and the MSE for IR horizon 2 are plotted in the following order: AIC, BIC, sAIC, sBIC, EW,
sFIC, AICc, sAICc, HQIC, sHQIC, FIC. In all but the very first interval, the second to last data
point, that is sHQIC, is among the lowest, confirming earlier results that it performs very well,
except for very small sample sizes.11

11 The MMA is not shown in the plot due to numerical problems in its calculation for small samples that are rather
unlikely to occur in practice but are problematic for sufficiently large Monte Carlo simulations.
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Figure 10 – Scatterplot of MSE of criteria and sample sizes for IR horizon 2. Within each horizontal
interval, the same sample size is used, and the MSE are plotted in the following order:
AIC, BIC, sAIC, sBIC, EW, sFIC, AICc, sAICc, HQIC, sHQIC, FIC.

VAR

This section demonstrates that the preceding study and in particular the analysis of section 5 is
relevant for the estimation of impulse responses with vector autoregressive models. To achieve
this, the optimal VAR order for estimating IR is found in Monte Carlo simulations. Rewriting
equation 2.5, the data generating process isy1,t

y2,t

 =

0.7 −0.8

0.6 0.9

 ·
y1,t−1
y2,t−2

+

ε1,t
ε2,t

−
0.2 −0.6

0.4 −0.3

 ·
ε1,t−1
ε2,t−1

 , (5.1)

with [ε1,t, ε2,t]
′ ∼ N (0, I) as in section 2. In each simulation, a sample allowing 200 effective

observations for each estimated AR(p) is generated. For the DGP and each AR(p), the implied
impulse response can be calculated as described in section 2 and appendix A.2 to calculate the
squared errors for each AR(p) of the (cross) impulse responses at different horizons. Recalling
the notation of equation 2.6, write
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horizon

1 2 3 4 5 6
sa

m
pl

e
si

ze 200

(
4 4

4 2

) (
4 2

2 4

) (
3 2

2 3

) (
2 4

1 3

) (
2 3

0 2

) (
1 3

2 3

)

50

(
2 2

2 2

) (
3 2

2 3

) (
2 2

2 0

) (
2 3

1 2

) (
2 0

0 2

) (
1 2

2 3

)

Table 7 – The optimal AR orders for estimating the different impulse responses for sample sizes 50
and 200 at horizons 1 through 6, when the DGP is given by equation 5.1.

Θh =

θ11,h θ21,h

θ12,h θ22,h

 ,

where θ11,h is the effect that a unit-sized shock to y1 has on y1 at horizon h. The effect of a
shock to y1 on y2 at horizon h is θ12,h, and θ21,h and θ22,h are defined likewise. Then table 7
shows in each cell a matrix with the optimal VAR orders for estimating the impulse responses
in the corresponding Θh. For instance, for a sample size of 200, it is optimal to use a VAR(4)
to estimate θ11,1, but a VAR(2) is best for estimating θ12,3. For a sample size of 50, a VAR(2) is
optimal for both θ11,1 and θ12,3.

The table shows that the optimal AR order depends on the IR horizon to be estimated as the
matrices within each row differ; hence different AR orders are optimal for different IR horizons.
Furthermore, also the sample size influences the optimal AR order as a comparison within each
column shows. Lastly, the optimal AR order depends on which (cross) impulse response is to be
estimated. For fixed h, the θij,h vary with i and j. For instance, to study the effect at horizon 3 of
a shock to variable y1 on y2, a different AR order should be used than to study the effect of a
shock to y2 on itself.

To see whether also the coefficient values influence the optimal AR order, table 8 gives the
same overview but for the processy1,t

y2,t

 =

0.4 −0.4

0.2 0.5

 ·
y1,t−1
y2,t−2

+

ε1,t
ε2,t

−
0.8 −0.1

0.5 −0.7

 ·
ε1,t−1
ε2,t−1

 . (5.2)
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horizon

1 2 3 4 5 6
sa

m
pl

e
si

ze 200

(
7 3

2 5

) (
0 2

2 1

) (
0 2

2 3

) (
2 3

0 0

) (
2 1

0 0

) (
0 0

0 0

)

50

(
4 3

2 4

) (
0 2

2 1

) (
0 2

0 0

) (
0 1

0 0

) (
0 1

0 0

) (
0 0

0 0

)

Table 8 – The optimal AR orders for estimating the different impulse responses for sample sizes 50
and 200 at horizons 1 through 6, when the DGP is given by equation 5.2.

As expected, the optimal AR orders change from table 7 to table 8; that is, the coefficients of
the DGP indeed influence the optimal AR orders.

To summarize, the same characteristics that are relevant in the univariate case are also
relevant for vector AR models, affirming hypothesis 5. Additionally, different AR orders are
optimal for estimating the effects on different variables. Overall, an in-depth study similar to
section 5 is desirable.

6 Conclusion

This paper investigates the performance of various criteria for estimating impulse responses
when estimated models are only approximations to the true data generating process. The
optimal AR order for estimating IR depends on the coefficients chosen for the DGP, the IR
horizon to be estimated, and the sample size. The same characteristics are also relevant for
vector autoregressive models. Furthermore, for VAR different lag lengths can be optimal for the
different (cross) impulse responses of each variable.

In the univariate case, Mallows’ Model Averaging and in particular smoothing based on the
Hannan-Quinn information criterion perform best in the Monte Carlo simulations across the
characteristics studied. Only for sample sizes below 50, smoothing of the AICc performs better,
suggesting that a similar small sample correction to the Hannan-Quinn information criterion
could be considered. In general, averaging results in lower mean squared errors than selecting a
single model; in particular, large errors are less common. The FIC and smoothed FIC, which are
the only criteria studied that adapt to the parameter estimated; that is, to the impulse response
horizon; did not perform particularly well.
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The simulations in this paper only offer preliminary results for the vector autoregressive models
that are of greater practical importance. A more in-depth analysis is necessary to confirm that
the model characteristics found relevant here indeed translate directly to VARs, and performance
of selection and averaging criteria is similar to AR models. Also, the effects of orthogonalization
of the errors need to be studied. Different orthogonalizations might be optimal depending on the
characteristics of the model and the model selection or averaging method used. Confidence
intervals and bands for the estimates are of further interest. However, in VARs these pose
problems of their own, and Hjort and Claeskens (2003) and Claeskens and Hjort (2008, ch. 10)
discuss the additional difficulty as the model selection or averaging process needs to be taken
into account.
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Appendices

A Mathematics

White Noise Process

This appendix shows that the ARMA(1,1) process of equation 2.1 is a white noise process when
α = β. Let

yt = αyt−1 + εt − αεt−1.

Rewrite this as
yt − εt = α (yt−1 − εt−1) ,

and note that the equation holds for all t, in particular for t− h. Hence

yt−h − εt−h = α (yt−h−1 − εt−h−1) . (A.1)

Taking h = 1, substitute above to get

yt − εt = α · a (yt−2 − εt−2) .

Now, take h = 2 in equation A.1 and substitute a (yt−3 − εt−3) for (yt−2 − εt−2). By successive
substitution,

yt − εt = αk · (yt−k − εt−k)

for k = 1, 2, . . . Taking the limit for k →∞ and adding εt to both sides,

=⇒ yt = εt + lim
k→∞

αk · (yt−k − εt−k) .

Since |a| < 1, y is stationary, see section 2. Also since εt ∼ i.i.d. N (0, 1), also ε is stationary.
Thus, with |a| < 1,

lim
k→∞

αk · (yt−k − εt−k) = 0

and hence yt = εt; that is, the process is white noise.

Impulse Response of ARMA(1,1)

This appendix derives a general formula for the impulse response function of an ARMA(1,1)
process. The impulse response function at horizon h gives the effect of a unit-sized shock at
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time 0 on yh. Therefore, let ε0 = 1 and εt = 0 for all t 6= 0. Then by equation 2.1,

yh = αyh−1 + εh − βεh−1.

In particular, y0 = αy−1 + ε0 − β · ε−1. Since only ε0 6= 0, yh = 0 for all h < 0, and hence y0 = 1.
Then

y1 = αy0 + ε1 − βε0 = α · 1 + 0− β · 1.

Note that yh, for h > 1 sums εh = εh−1 = 0 as well as yh−1. Hence, for h > 1,

yh = αyh−1 = αh−1y1 = (α− β)αh−1.

Since also y1 = α1−1 (α− β), define for an ARMA(1,1) process in the form of equation 2.1 the
impulse response at horizon h ≥ 1 as

θh = (α− β)αh−1.

Impulse Response of VAR(p)

For a more formal derivation of the impulse response of an autoregressive process that also
includes the VARs discussed in section 2, first rewrite the VAR(p) as a VAR(1) as in equation 2.3,
and then consider again equation 2.4. As before, the impulse response functions give the effect
of a unit-sized shock to one variable on the other variables.

In a bivariate VAR, there are hence four impulse responses at each horizon: the effect of a
shock to variable 1 on variable 1, to variable 1 on variable 2, to variable 2 on variable 1, and
to variable 2 on variable 2. To calculate the response, for instance to a unit shock to the first
variable y1,0, set v0 = (1, 0, 0, 0)′. Then clearly z0 = (1, 0, 0, 0)′.

Since all further shocks are 0, equation 2.4 implies that z1 = Γz0 + 0, z2 = Γz1 + 0 = Γ2z0

and in general
zh = Γhz0. (A.2)

Recalling the definition of zh in equation 2.4,

zh = (y1,h, y2,h, y1,h−1, y2,h−1)
′ ,

note that only the first two rows of Γhzt are relevant to find the effect on y1,h and y2,h. Since
z0 = (1, 0, 0, 0)′, the impulse responses of the variables to a shock to the first variable are equal
to the first column and corresponding rows of Γh. Similarly, the response to a shock to the
second variable can be found in the second column as then z0 = (0, 1, 0, 0)′ picks up only the
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second column in equation A.2.
In general, the impulse responses at horizon h of the first k variables can be found in the

upper left k-by-k submatrix of Γh. The univariate AR is therefore simply a special case, where
the impulse response can be found in the upper left 1-by-1 submatrix of the companion matrix
Γh; that is, the IR is the element (1,1).

Ranking of AR Order Chosen by Criteria

In the setting of this paper, the candidate models can be ordered by the number of lags included.
Due to their similar structure, one can then find a fixed ordering of the information criteria by
the number of lags included. In particular, for sufficiently large samples, AIC will always select
at least as many lags as HQIC and BIC, and HQIC will select at least as many lags as BIC.
Mathematically, the following statement will be shown to be true.

Suppose two models, an AR(p) and an AR(q), are compared, where q > p. Assume that
BICq < BICp; that is, BIC selects the AR(q). Then ∃N such that ∀n > N , AICq < AICp; that
is, AIC also selects the larger AR(q), where n is the effective sample size.

By assumption BICq −BICp < 0. Using the formulas of section 3, rewrite this inequality as

n ln σ̂2q − n ln σ̂2p + q lnn− p lnn < 0.

Note that AICq −AICp = n ln σ̂2q − n ln σ̂2p + 2q − 2p. Clearly, the first two terms are the same
as in the inequality of the BIC. Hence, if

2q − 2p < q lnn− p lnn,

then AICq −AICp < BICq −BICp < 0, so also AICq < AICp. Clearly,

2 (q − p) < lnn (q − p)

⇐⇒ 2 < lnn ⇐= n ≥ 8.

So with N = 7, ∀n > N , AICq < AICp as n ∈ N. Hence, for n ≥ 8, AIC selects at least as
many lags as BIC.

Similarly, one can compare AIC with HQIC and HQIC with BIC by considering the penalty
terms. For the former,

2 < 2 ln lnn ⇐= n ≥ 16.
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So for samples with at least 16 effective observations, AIC selects a model at least as large
as HQIC. Lastly, when comparing HQIC to BIC,

2 ln lnn < lnn ⇐= n ≥ 2,

hence for all samples, HQIC selects models at least as large as BIC. Overall, for samples of
at least 16 effective observations, the order of BIC is less than or equal to the order of HQIC,
which is less than or equal to the order of AIC.
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B MSE of all Criteria

Appendix B contains tables with the MSE of all criteria and coefficient pairs for different impulse
response horizons and sample sizes. Appendix B uses 200 effective observations to estimate
the impulse response at horizon 2. Appendix B uses 200 effective observations to estimate the
impulse response at horizon 6.

Impulse Response Horizon 2

This appendix gives detailed numerical results. The mean squared errors of all criteria for all
coefficient pairs at impulse response horizon 2 with 200 effective observations are given. 50,000
simulations were run for each pair of coefficients. All MSE are scaled up by a factor of 1,000
for improved readability. Each criterion is shown in its own table. For example, when α = 0.7

and β = 0.3, equal weights result in a mean squared error of 5.73 · 10−3 = 0.00573. When the
AIC is used instead, the MSE for the same coefficient pair is 6.66 · 10−3 = 0.00666, hence equal
weights performs better (has a lower MSE) than the AIC for these coefficients. Color-coded
tables that allow an easy comparison of the performance of a criterion for a given coefficient
pair to the performance of the other criteria for that coefficient pair are available in digital Excel
format from the author upon request.

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 3.65 4.20 5.02 6.38 9.41 13.96 19.68 27.61 39.40 69.24

-0.7 4.96 3.63 4.28 5.43 6.81 8.72 11.38 15.14 20.76 35.36

-0.5 7.50 3.98 3.67 4.10 4.91 5.98 7.34 9.04 11.57 16.77

-0.3 8.59 5.08 3.90 3.66 4.01 4.54 5.38 6.57 7.90 9.45

-0.1 8.14 5.98 4.61 3.85 3.64 3.87 4.48 5.47 6.81 7.90

0.1 7.78 6.65 5.43 4.50 3.92 3.65 3.84 4.70 6.32 8.92

0.3 10.06 8.17 6.81 5.64 4.67 4.02 3.66 3.95 5.35 9.41

0.5 18.97 12.82 9.99 7.96 6.43 5.20 4.15 3.64 4.12 8.16

0.7 39.33 23.82 17.19 12.87 9.74 7.49 5.73 4.44 3.64 5.24

0.9 77.23 45.34 31.75 22.98 16.26 11.10 7.51 5.54 4.48 3.61

Table 9 – MSE of equal weights at impulse response horizon 2 with 200 observations.
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β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 2.36 6.23 7.35 7.55 7.02 9.69 12.80 15.69 18.70 22.87

-0.7 7.16 2.35 6.56 6.48 6.21 7.01 10.40 12.94 15.41 18.90

-0.5 6.36 7.32 2.41 5.14 5.05 6.02 8.42 10.54 12.53 15.36

-0.3 7.18 6.32 6.97 2.39 3.84 5.15 7.36 8.81 10.32 12.57

-0.1 8.38 7.15 7.18 5.42 2.40 4.06 7.20 7.41 8.48 10.09

0.1 10.44 8.58 7.42 7.06 3.99 2.37 5.54 7.20 7.14 8.48

0.3 12.91 10.44 8.87 7.31 5.08 3.83 2.39 7.08 6.28 7.26

0.5 16.05 12.87 10.74 8.39 6.03 5.30 5.29 2.38 7.31 6.48

0.7 19.89 15.89 13.19 10.40 7.29 6.50 6.66 6.87 2.40 7.26

0.9 24.68 19.63 16.41 13.07 10.56 7.16 7.22 7.26 6.49 2.34

Table 10 – MSE of AIC at impulse response horizon 2 with 200 observations.

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 2.13 5.80 6.56 6.37 6.25 8.52 12.36 15.47 18.60 22.77

-0.7 6.32 2.13 5.38 5.71 5.91 6.84 9.87 12.73 15.30 18.78

-0.5 6.28 5.83 2.15 4.34 4.73 5.82 7.97 10.30 12.46 15.22

-0.3 7.07 6.26 5.20 2.14 3.60 4.73 6.83 8.53 10.24 12.44

-0.1 8.27 7.04 6.64 4.15 2.14 3.55 6.03 7.22 8.39 9.98

0.1 10.32 8.49 7.23 5.92 3.50 2.14 4.24 6.66 7.04 8.39

0.3 12.79 10.35 8.59 6.84 4.68 3.56 2.13 5.30 6.26 7.17

0.5 15.95 12.79 10.47 8.02 5.88 4.93 4.40 2.14 5.93 6.41

0.7 19.81 15.79 12.95 10.01 7.16 6.15 5.88 5.59 2.14 6.43

0.9 24.63 19.53 16.14 12.82 9.38 6.62 6.35 6.40 5.97 2.10

Table 11 – MSE of sAIC at impulse response horizon 2 with 200 observations.
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β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 2.24 6.33 7.48 7.58 6.92 9.63 12.78 15.68 18.65 22.92

-0.7 7.45 2.23 6.64 6.50 6.16 6.91 10.38 12.94 15.36 18.88

-0.5 6.43 7.49 2.28 5.13 4.98 5.95 8.40 10.56 12.51 15.32

-0.3 7.20 6.35 7.08 2.27 3.74 5.09 7.38 8.84 10.30 12.52

-0.1 8.36 7.15 7.28 5.40 2.26 3.98 7.28 7.44 8.47 10.06

0.1 10.40 8.56 7.43 7.11 3.90 2.24 5.53 7.31 7.15 8.49

0.3 12.85 10.39 8.88 7.30 5.01 3.74 2.25 7.18 6.33 7.31

0.5 16.00 12.82 10.75 8.35 5.94 5.25 5.27 2.26 7.50 6.57

0.7 19.89 15.82 13.17 10.35 7.19 6.45 6.69 6.97 2.26 7.61

0.9 24.73 19.58 16.37 13.02 10.54 7.05 7.20 7.34 6.59 2.20

Table 12 – MSE of AICc at impulse response horizon 2 with 200 observations.

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 1.98 5.86 6.62 6.34 6.11 8.40 12.33 15.46 18.56 22.79

-0.7 6.50 1.98 5.40 5.69 5.83 6.73 9.83 12.72 15.26 18.76

-0.5 6.35 5.90 2.00 4.28 4.65 5.74 7.94 10.31 12.43 15.18

-0.3 7.08 6.30 5.20 1.99 3.48 4.65 6.82 8.54 10.22 12.40

-0.1 8.25 7.04 6.70 4.07 1.99 3.43 6.05 7.25 8.39 9.95

0.1 10.28 8.47 7.24 5.92 3.38 1.99 4.17 6.74 7.05 8.39

0.3 12.74 10.32 8.59 6.81 4.59 3.45 1.98 5.31 6.32 7.21

0.5 15.91 12.75 10.46 7.97 5.80 4.85 4.34 1.99 6.01 6.50

0.7 19.80 15.75 12.93 9.95 7.05 6.09 5.87 5.62 1.99 6.63

0.9 24.68 19.50 16.10 12.76 9.29 6.47 6.28 6.45 6.04 1.95

Table 13 – MSE of sAICc at impulse response horizon 2 with 200 observations.
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β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 0.18 11.62 12.46 8.55 5.64 9.19 13.73 15.95 18.45 24.42

-0.7 19.36 0.17 9.23 7.78 5.53 5.12 10.19 13.83 15.14 18.99

-0.5 15.66 13.27 0.17 4.82 3.91 4.76 7.82 11.83 12.52 14.68

-0.3 9.60 13.19 8.57 0.17 1.99 3.90 8.86 10.24 10.78 11.80

-0.1 8.95 9.02 13.50 4.29 0.16 2.02 9.67 10.48 9.62 9.92

0.1 9.96 9.37 9.96 9.06 1.82 0.19 4.69 13.99 9.45 9.45

0.3 12.01 10.61 9.79 8.26 3.54 2.08 0.16 9.07 13.76 10.20

0.5 15.50 12.62 11.41 7.38 4.51 4.28 5.20 0.17 13.75 16.77

0.7 20.41 15.52 13.50 9.74 5.56 6.02 8.54 10.01 0.19 19.79

0.9 27.03 19.49 16.01 13.25 11.18 5.43 7.10 11.14 12.18 0.16

Table 14 – MSE of BIC at impulse response horizon 2 with 200 observations.

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 0.14 9.18 9.85 7.14 5.03 7.24 13.03 15.38 18.32 24.06

-0.7 15.46 0.14 7.01 6.19 5.30 5.16 9.31 13.19 15.02 18.80

-0.5 13.76 9.78 0.14 4.04 3.65 4.68 7.34 11.07 12.39 14.57

-0.3 9.33 11.12 6.03 0.14 1.83 3.54 7.67 9.57 10.58 11.72

-0.1 8.74 8.75 10.47 2.95 0.14 1.56 7.40 9.64 9.33 9.79

0.1 9.83 9.07 9.18 6.82 1.38 0.15 3.27 10.96 9.16 9.24

0.3 11.92 10.39 9.17 7.14 3.22 1.89 0.13 6.43 11.65 9.98

0.5 15.39 12.48 10.70 7.00 4.49 3.97 4.38 0.14 10.14 14.67

0.7 20.18 15.37 12.88 9.12 5.59 5.73 6.78 7.72 0.15 15.85

0.9 26.66 19.33 15.47 13.05 9.17 5.03 6.16 8.86 9.57 0.13

Table 15 – MSE of sBIC at impulse response horizon 2 with 200 observations.
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β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 0.82 8.17 9.47 7.94 6.04 9.32 12.81 15.80 18.45 23.25

-0.7 13.04 0.82 7.90 7.09 5.71 5.87 10.34 13.28 15.18 18.85

-0.5 8.03 10.53 0.81 4.94 4.38 5.28 8.22 11.03 12.41 15.05

-0.3 7.60 7.93 8.26 0.78 2.65 4.47 7.95 9.38 10.33 12.25

-0.1 8.38 7.52 9.52 5.09 0.83 2.90 8.46 8.34 8.70 9.91

0.1 10.16 8.66 8.12 8.13 2.76 0.81 5.34 9.69 7.62 8.64

0.3 12.54 10.31 9.22 7.66 4.26 2.68 0.79 8.54 8.10 7.92

0.5 15.80 12.64 11.01 7.95 5.14 4.70 5.19 0.81 10.66 8.37

0.7 19.99 15.60 13.33 10.01 6.22 6.09 7.50 8.44 0.84 13.22

0.9 25.31 19.43 16.26 12.67 10.73 5.99 7.03 8.89 8.62 0.77

Table 16 – MSE of HQIC at impulse response horizon 2 with 200 observations.

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 0.70 6.93 7.68 6.36 5.23 7.54 12.34 15.42 18.39 23.03

-0.7 9.63 0.70 5.88 5.76 5.39 5.83 9.57 12.85 15.10 18.69

-0.5 7.73 7.29 0.69 3.91 4.01 5.11 7.65 10.55 12.33 14.94

-0.3 7.42 7.47 5.44 0.68 2.42 3.97 7.06 8.85 10.24 12.14

-0.1 8.24 7.35 7.93 3.39 0.70 2.31 6.49 7.93 8.57 9.81

0.1 10.06 8.51 7.75 6.16 2.19 0.70 3.60 8.12 7.49 8.50

0.3 12.44 10.22 8.73 6.82 3.79 2.42 0.68 5.69 7.64 7.73

0.5 15.70 12.56 10.50 7.51 5.05 4.26 4.08 0.69 7.50 8.09

0.7 19.84 15.53 12.87 9.50 6.19 5.73 6.10 6.31 0.70 9.90

0.9 25.14 19.35 15.84 12.53 8.88 5.45 5.92 7.21 7.20 0.67

Table 17 – MSE of sHQIC at impulse response horizon 2 with 200 observations.
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β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 2.81 7.66 9.89 8.84 6.86 9.58 14.39 16.12 17.45 22.84

-0.7 12.64 2.77 7.36 6.80 6.23 6.85 9.92 13.05 15.29 18.21

-0.5 28.77 10.01 2.86 5.19 4.96 5.97 8.46 8.87 12.63 14.28

-0.3 17.08 13.93 6.67 2.83 3.26 4.69 7.64 11.50 12.94 12.23

-0.1 8.79 5.57 5.61 3.75 2.79 2.61 5.57 7.09 10.28 19.37

0.1 18.72 10.02 6.95 5.21 2.58 2.81 3.81 5.68 5.91 9.32

0.3 11.74 12.71 11.12 7.59 4.53 3.30 2.80 6.73 13.71 16.26

0.5 14.69 12.58 8.71 8.25 5.95 5.23 5.38 2.79 10.27 29.66

0.7 19.21 15.59 13.22 10.02 7.18 6.50 7.14 7.66 2.79 13.20

0.9 24.68 18.34 16.68 14.56 10.57 6.96 7.94 8.88 8.24 2.76

Table 18 – MSE of FIC at impulse response horizon 2 with 200 observations.

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 3.82 5.46 5.98 6.53 7.28 9.40 12.70 15.12 17.84 23.66

-0.7 6.13 3.81 5.28 5.70 6.44 7.62 9.70 12.53 14.80 18.45

-0.5 7.80 5.25 3.85 4.84 5.41 6.38 7.75 9.52 12.02 14.29

-0.3 6.54 5.42 4.76 3.84 4.44 5.30 6.64 8.25 9.62 11.15

-0.1 8.67 6.17 5.09 4.26 3.82 4.15 5.34 6.96 8.80 9.93

0.1 9.77 8.70 6.95 5.31 4.18 3.83 4.24 5.14 6.42 9.27

0.3 11.17 9.48 8.28 6.76 5.33 4.42 3.83 4.75 5.46 7.06

0.5 15.06 12.21 9.66 7.88 6.52 5.59 4.86 3.81 5.30 8.18

0.7 19.80 15.21 12.78 10.05 7.90 6.65 5.82 5.41 3.82 6.29

0.9 26.20 18.83 15.78 13.39 10.00 7.69 6.66 5.93 5.66 3.78

Table 19 – MSE of sFIC at impulse response horizon 2 with 200 observations.
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β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 1.28 6.09 7.07 6.45 5.67 7.88 12.17 15.36 18.57 23.68

-0.7 6.54 1.28 5.50 5.97 5.78 6.22 9.29 12.42 15.01 18.82

-0.5 7.50 5.61 1.30 3.93 4.34 5.29 7.45 9.98 12.12 14.77

-0.3 7.79 6.72 4.80 1.28 2.66 4.05 6.58 8.41 10.03 11.95

-0.1 8.38 7.34 6.78 3.46 1.29 2.58 5.89 7.41 8.52 9.80

0.1 9.93 8.39 7.23 5.66 2.52 1.29 3.60 6.95 7.58 8.79

0.3 12.20 9.99 8.32 6.44 3.95 2.67 1.28 4.99 6.96 8.25

0.5 15.60 12.39 10.05 7.41 5.33 4.65 4.07 1.29 5.80 7.99

0.7 20.14 15.60 12.62 9.47 6.62 6.16 6.34 5.84 1.29 6.82

0.9 26.20 19.84 16.13 12.82 9.19 5.98 6.19 6.89 6.40 1.26

Table 20 – MSE of MMA at impulse response horizon 2 with 200 observations.

Impulse Response Horizon 6

This appendix gives detailed numerical results. The mean squared errors of all criteria for all
coefficient pairs at impulse response horizon 6 with 200 effective observations are given. 50,000
simulations were run for each pair of coefficients. All MSE are scaled up by a factor of 1,000
for improved readability. Each criterion is shown in its own table. For example, when α = 0.7

and β = 0.3, equal weights result in a mean squared error of 3.04 · 10−3 = 0.00304. When the
AIC is used instead, the MSE for the same coefficient pair is 3.13 · 10−3 = 0.00313, hence equal
weights performs better (has a lower MSE) than the AIC for these coefficients. Color-coded
tables that allow an easy comparison of the performance of a criterion for a given coefficient
pair to the performance of the other criteria for that coefficient pair are available in digital Excel
format from the author upon request.
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β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 1.43 3.19 5.88 8.94 12.86 18.26 25.30 35.23 47.39 67.13

-0.7 2.23 1.42 1.87 2.84 4.35 6.51 9.12 12.23 15.89 19.19

-0.5 2.28 1.62 1.44 1.62 2.15 3.03 4.27 5.98 7.73 9.35

-0.3 2.47 1.94 1.56 1.44 1.57 1.95 2.61 3.52 4.64 5.74

-0.1 3.06 2.44 1.90 1.55 1.44 1.56 1.90 2.46 3.25 4.07

0.1 3.96 3.24 2.44 1.85 1.56 1.44 1.56 1.89 2.46 3.13

0.3 5.71 4.63 3.47 2.57 1.93 1.55 1.45 1.57 1.95 2.55

0.5 9.45 7.86 6.00 4.38 3.07 2.16 1.62 1.43 1.64 2.38

0.7 21.93 17.73 13.48 9.96 6.94 4.73 3.04 1.93 1.43 2.38

0.9 87.59 62.39 45.74 33.67 24.03 17.00 11.91 7.74 3.84 1.42

Table 21 – MSE of equal weights at impulse response horizon 6 with 200 observations.

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 0.74 4.99 6.06 8.42 12.23 16.13 24.74 35.41 51.46 61.81

-0.7 5.12 0.66 1.96 3.11 4.07 7.11 11.69 17.14 23.50 28.66

-0.5 6.52 2.16 0.70 1.13 1.53 2.60 5.14 10.49 14.73 17.67

-0.3 7.13 3.83 1.33 0.70 1.02 1.38 2.61 5.88 11.00 12.67

-0.1 8.29 5.79 2.09 1.11 0.70 1.00 1.59 3.41 8.38 9.95

0.1 9.83 8.24 3.25 1.49 1.01 0.71 1.12 2.19 6.06 8.36

0.3 12.82 11.13 5.60 2.44 1.31 0.97 0.73 1.35 4.07 7.29

0.5 17.98 15.24 10.39 5.03 2.55 1.51 1.11 0.70 2.30 6.66

0.7 30.72 25.08 18.30 12.26 7.02 4.22 3.13 1.90 0.71 5.25

0.9 70.90 58.02 41.17 30.65 19.95 15.22 10.58 7.38 5.53 0.70

Table 22 – MSE of AIC at impulse response horizon 6 with 200 observations.
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Are You Sure You Are Using the Correct Model?

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 0.55 4.05 5.48 8.04 11.61 15.71 23.75 33.84 48.92 61.35

-0.7 3.78 0.50 1.50 2.56 3.64 6.37 10.80 16.17 22.56 28.34

-0.5 5.53 1.51 0.52 0.86 1.25 2.13 4.36 8.79 13.92 17.47

-0.3 6.59 2.84 0.97 0.53 0.77 1.08 2.07 4.62 9.66 12.53

-0.1 7.97 4.47 1.57 0.82 0.54 0.75 1.20 2.63 6.82 9.81

0.1 9.65 6.69 2.51 1.14 0.75 0.52 0.83 1.65 4.68 8.08

0.3 12.66 9.70 4.38 1.93 1.04 0.74 0.55 0.98 3.01 6.75

0.5 17.76 14.30 8.70 4.35 2.08 1.23 0.85 0.52 1.64 5.65

0.7 30.41 24.13 17.30 11.45 6.30 3.80 2.64 1.48 0.52 3.96

0.9 70.51 55.62 39.82 29.52 19.52 14.56 10.17 6.77 4.55 0.51

Table 23 – MSE of sAIC at impulse response horizon 6 with 200 observations.

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 0.60 4.94 5.97 8.27 12.07 15.77 24.38 34.97 51.50 61.77

-0.7 5.00 0.53 1.78 2.94 3.87 6.91 11.50 17.03 23.46 28.62

-0.5 6.59 1.93 0.56 0.95 1.33 2.36 4.88 10.41 14.83 17.63

-0.3 7.22 3.62 1.13 0.58 0.84 1.17 2.35 5.68 11.11 12.68

-0.1 8.35 5.65 1.84 0.92 0.57 0.83 1.36 3.13 8.40 10.00

0.1 9.83 8.24 2.97 1.29 0.83 0.56 0.93 1.93 5.95 8.45

0.3 12.79 11.23 5.37 2.18 1.11 0.80 0.59 1.15 3.87 7.41

0.5 17.94 15.34 10.28 4.75 2.31 1.30 0.93 0.56 2.08 6.76

0.7 30.65 25.11 18.19 12.06 6.77 3.99 2.95 1.73 0.57 5.16

0.9 70.89 58.18 40.82 30.40 19.63 15.11 10.49 7.37 5.50 0.56

Table 24 – MSE of AICc at impulse response horizon 6 with 200 observations.
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Are You Sure You Are Using the Correct Model?

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 0.43 4.00 5.43 7.96 11.48 15.42 23.43 33.38 48.68 61.28

-0.7 3.64 0.39 1.34 2.41 3.44 6.15 10.60 16.02 22.44 28.27

-0.5 5.45 1.32 0.41 0.70 1.06 1.91 4.10 8.58 13.89 17.43

-0.3 6.55 2.61 0.80 0.41 0.62 0.90 1.82 4.34 9.59 12.52

-0.1 7.95 4.25 1.35 0.66 0.42 0.60 1.01 2.37 6.68 9.81

0.1 9.63 6.52 2.25 0.95 0.60 0.41 0.67 1.43 4.47 8.08

0.3 12.62 9.62 4.10 1.68 0.86 0.59 0.43 0.81 2.78 6.74

0.5 17.69 14.26 8.47 4.06 1.85 1.05 0.69 0.40 1.44 5.59

0.7 30.34 24.03 17.14 11.23 6.06 3.58 2.48 1.33 0.40 3.83

0.9 70.51 55.51 39.52 29.33 19.27 14.48 10.14 6.77 4.53 0.40

Table 25 – MSE of sAICc at impulse response horizon 6 with 200 observations.

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 0.00 6.67 7.99 10.52 12.51 12.51 23.48 31.20 49.75 68.67

-0.7 1.54 0.00 1.00 2.48 2.42 5.39 11.19 19.06 23.30 29.71

-0.5 3.48 0.13 0.00 0.07 0.15 0.81 3.24 9.68 18.71 19.30

-0.3 6.68 0.68 0.03 0.00 0.01 0.04 0.45 2.59 12.96 15.98

-0.1 10.36 2.43 0.15 0.01 0.00 0.01 0.06 0.60 6.67 13.67

0.1 13.51 6.39 0.54 0.05 0.01 0.00 0.01 0.17 2.69 10.67

0.3 16.28 13.11 2.29 0.39 0.04 0.01 0.00 0.03 0.80 7.14

0.5 19.97 19.26 9.23 2.92 0.67 0.14 0.06 0.00 0.15 3.68

0.7 32.50 25.19 20.57 11.80 4.67 2.59 2.56 0.99 0.00 1.58

0.9 79.54 57.50 39.64 30.34 15.98 16.21 13.71 10.36 7.70 0.00

Table 26 – MSE of BIC at impulse response horizon 6 with 200 observations.
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Are You Sure You Are Using the Correct Model?

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 0.00 5.95 7.50 9.99 12.04 12.73 22.54 30.40 44.53 63.24

-0.7 1.45 0.00 0.86 2.01 2.18 4.70 9.83 16.23 21.45 27.70

-0.5 2.36 0.10 0.00 0.05 0.12 0.66 2.35 6.60 14.49 17.72

-0.3 4.31 0.39 0.02 0.00 0.01 0.04 0.29 1.54 8.41 13.46

-0.1 7.10 1.41 0.10 0.01 0.00 0.01 0.05 0.37 3.92 10.31

0.1 10.11 3.76 0.35 0.04 0.01 0.00 0.01 0.11 1.54 7.36

0.3 13.68 8.45 1.37 0.25 0.03 0.01 0.00 0.02 0.46 4.67

0.5 18.30 14.80 6.33 2.11 0.53 0.12 0.05 0.00 0.12 2.49

0.7 30.47 23.30 17.60 10.32 4.06 2.34 2.13 0.88 0.00 1.50

0.9 74.96 53.36 38.88 29.36 16.28 15.59 13.18 9.83 7.03 0.00

Table 27 – MSE of sBIC at impulse response horizon 6 with 200 observations.

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 0.06 5.29 6.44 8.75 11.97 13.83 23.25 32.28 51.58 62.96

-0.7 3.24 0.05 1.06 2.38 2.80 5.83 10.88 17.26 23.34 28.76

-0.5 6.12 0.61 0.05 0.20 0.37 1.13 3.45 10.02 16.03 17.77

-0.3 7.65 1.95 0.23 0.05 0.13 0.22 0.89 4.05 12.16 13.14

-0.1 9.20 4.30 0.56 0.14 0.05 0.12 0.30 1.50 8.25 10.88

0.1 10.62 7.94 1.37 0.28 0.11 0.05 0.15 0.65 4.68 9.46

0.3 13.18 12.37 3.69 0.79 0.21 0.13 0.06 0.23 2.22 8.06

0.5 18.02 16.70 9.71 3.24 1.02 0.36 0.19 0.05 0.70 6.38

0.7 30.82 25.16 18.45 11.44 5.38 2.90 2.38 1.04 0.05 3.39

0.9 72.60 58.90 39.44 29.93 17.61 15.43 11.32 8.30 6.14 0.06

Table 28 – MSE of HQIC at impulse response horizon with 200 observations.
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Are You Sure You Are Using the Correct Model?

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 0.04 4.45 5.93 8.44 11.45 13.88 22.41 31.10 47.01 61.46

-0.7 2.51 0.04 0.84 1.89 2.49 5.04 9.78 15.60 21.82 27.96

-0.5 4.44 0.41 0.04 0.14 0.31 0.89 2.73 7.38 13.92 17.30

-0.3 5.99 1.24 0.15 0.04 0.09 0.17 0.63 2.66 9.14 12.62

-0.1 7.80 2.76 0.37 0.10 0.04 0.08 0.22 1.00 5.55 9.97

0.1 9.69 5.30 0.92 0.19 0.08 0.04 0.11 0.43 3.00 8.04

0.3 12.65 9.17 2.43 0.55 0.16 0.09 0.04 0.16 1.41 6.31

0.5 17.56 14.31 7.14 2.58 0.79 0.29 0.14 0.04 0.48 4.63

0.7 30.13 23.59 16.74 10.34 4.67 2.59 1.97 0.85 0.04 2.65

0.9 71.35 54.71 38.41 28.97 17.71 14.75 11.04 7.71 5.30 0.04

Table 29 – MSE of sHQIC at impulse response horizon 6 with 200 observations.

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 2.26 5.31 8.27 10.89 13.18 17.33 24.33 36.17 49.85 65.03

-0.7 3.79 2.23 2.39 3.37 4.55 7.54 13.14 20.77 26.56 29.95

-0.5 3.89 2.31 2.30 2.10 2.40 3.20 5.32 10.37 17.62 22.34

-0.3 3.97 2.73 2.17 2.27 2.14 2.38 3.01 4.31 7.86 11.28

-0.1 5.11 3.40 2.44 2.22 2.27 2.19 2.31 2.91 4.63 6.86

0.1 6.93 4.70 2.89 2.32 2.24 2.29 2.13 2.39 3.48 5.10

0.3 11.09 7.91 4.32 2.98 2.39 2.16 2.29 2.13 2.77 4.22

0.5 22.13 17.44 9.88 5.32 3.29 2.44 2.17 2.24 2.30 4.05

0.7 33.19 28.87 21.99 13.23 7.41 4.77 3.51 2.42 2.23 3.90

0.9 78.11 58.37 42.35 29.54 20.54 15.85 13.16 9.34 5.65 2.22

Table 30 – MSE of FIC at impulse response horizon 6 with 200 observations.
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Are You Sure You Are Using the Correct Model?

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 1.93 4.06 5.87 8.63 12.49 17.65 24.39 34.20 45.78 59.00

-0.7 3.05 1.88 2.46 3.53 5.16 7.88 11.60 16.18 21.43 25.81

-0.5 3.39 2.21 1.93 2.11 2.74 3.78 5.52 8.47 12.22 15.80

-0.3 3.90 2.68 2.10 1.93 2.07 2.53 3.37 4.74 7.06 9.73

-0.1 5.00 3.48 2.53 2.09 1.93 2.07 2.48 3.27 4.75 6.74

0.1 6.55 4.77 3.25 2.43 2.09 1.93 2.07 2.51 3.51 5.13

0.3 9.77 7.13 4.72 3.33 2.52 2.04 1.95 2.08 2.68 4.12

0.5 15.99 12.45 8.48 5.69 3.85 2.74 2.13 1.90 2.22 3.52

0.7 28.36 23.12 17.30 12.27 8.07 5.42 3.70 2.49 1.90 3.20

0.9 71.94 54.25 40.16 29.47 21.08 15.00 10.60 7.17 4.57 1.88

Table 31 – MSE of sFIC at impulse response horizon 6 with 200 observations.

β

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

α

-0.9 0.49 4.03 6.17 8.90 12.04 14.67 22.73 32.51 46.82 60.12

-0.7 2.67 0.46 1.29 2.30 3.13 5.72 10.13 15.91 22.09 27.55

-0.5 3.89 1.12 0.48 0.69 0.92 1.63 3.52 7.96 13.50 17.09

-0.3 5.03 2.00 0.75 0.48 0.62 0.80 1.46 3.53 8.61 11.88

-0.1 6.66 3.33 1.11 0.65 0.49 0.61 0.88 1.85 5.55 8.78

0.1 8.67 5.41 1.74 0.84 0.61 0.48 0.66 1.17 3.51 6.76

0.3 12.03 8.67 3.33 1.36 0.77 0.60 0.49 0.76 2.13 5.20

0.5 17.45 13.87 7.81 3.37 1.54 0.92 0.68 0.48 1.19 4.01

0.7 29.96 23.85 17.08 10.49 5.40 3.34 2.45 1.31 0.47 2.81

0.9 71.02 54.84 39.38 28.83 18.31 15.18 11.52 7.96 4.75 0.47

Table 32 – MSE of MMA at impulse response horizon 6 with 200 observations.

Marble series (2015) 1: Quantitative methods in Business and Economics 45


	Introduction
	The Model
	Model Selection
	Model Averaging
	Results
	Conclusion
	References
	Appendices
	Mathematics
	MSE of all Criteria

