
Summary

This paper contributes to the existing literature on the topic of trend estima-
tion in temperature series by applying a non-standard estimation procedure
to data from cities all over Europe. It seems that statements about the
important topic of global warming are oftentimes based on linear trend esti-
mation, where a straight line is fitted to the temperature data. It is argued
in this paper that this approach of linear trend estimation is too restrictive
in the case of temperature data and that a different approach, allowing for
a more flexible form of the trend, yields more accurate results. For instance,
regressing the European temperature data on a linear trend provides evi-
dence of no global warming for all series under consideration, whereas the
non-parametric approach advocated in this paper shows a recent upward
trend for all series underlining the importance of taking the complexity of
temperature data into account.
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1.1 Introduction

A change in the Earth’s climate can be caused by various different forces,
which can be divided into two broad classes according to their origin. Natu-
ral and so-called anthropogenic factors are considered by the World Metero-
logical Organization (WMO) to lead to climate change. In particular, the
latter class receives attention from scientists as well as politicians all over
the world, since this is the category consisting of human-induced forces.
Among these anthropogenic factors of climate change are greenhouse gas
emissions, atmospheric aerosols and a change in land use - like deforestation
[WMO (2012)].

A rapid climate change that cannot be explained by natural causes
only is often referred to as global warming [WMO (2012)]. The term cli-
mate change is officially defined by the Intergovernmental Panel on Climate
Change (IPCC) as a change in the mean or variability of climate properties
that last over decades or longer and are caused by natural processes or by
external forces [IPCC (2012)]. Climate change can lead to climate extremes,
which occur when a climate variable lies above or below a certain thresh-
old, determined by observed values for this variable. This, in turn, can lead
to a climate disaster, which is a physical event that causes severe changes
in the functioning of a community or society and requires emergency help
[IPCC (2012)]. This is a formal definition of what can be seen in real life as
earthquakes, heat waves, hurricanes, tsunamis and other extreme weather
events.

The IPCC is one of the leading organizations in the analysis and as-
sessment of climate change founded by the United Nations Environment
Programme (UNEP) and the WMO. Its main concern is to provide impor-
tant information to policy makers from many countries in order to help
them base their decisions concerning the environment on scientific grounds.
In 2007, the IPCC published their most recent assessment report, which
contained estimates on trends in air temperature. If a significant, positive
trend is found in temperature data, empirical evidence of the presence of
global warming is created. The probably most frequently cited estimate
taken from this report is that ”global mean surface temperatures have risen
by 0.74◦C ± 0.18◦C when estimated by a linear trend over the last 100 years
(19062005)” ([IPCC (2007)], p.237). The report further states that global
warming is now unequivocal. The method, on which these statements are
based and which is mentioned in the quote, is linear trend estimation. Linear
trend estimation assumes that a rise in temperature, if any, takes place at a
constant pace over the whole period under consideration. A straight line is
fit to temperature data and the slope of this line can be seen as the speed of
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global warming. However, as temperature data usually are more complex,
the trend might be more complex and can take on a non-linear shape.

In times of more frequently occuring climate disasters, the topic of trend
estimation in temperature data is highly sensitive and the form of the trend
should be carefully estimated. Linear trend estimation - as applied by the
IPCC - restricts the trend to have a specific, pre-defined form. Other re-
search has adapted to the complexity of temperature data by allowing the
trend to have other forms, for example, a quadratic trend. A way of esti-
mating trends with even more flexibility is non-parametric estimation, where
no specific form has to be agreed upon in advance. Although it is more ad-
vanced to obtain confidence bands for this method, [Bühlmann (1998)] has
shown that a sieve bootstrap method can be applied in this context and
that it provides valid confidence intervals.

It is the purpose of this paper to show that the flexibility of non-
parametric estimation is needed in the context of temperature data. It adds
to the existing literature by applying a non-parametric approach in combina-
tion with the method proposed by [Bühlmann (1998)] to several temperature
series from Europe. Additionally, these temperature series provide a spread
over different geographical and climatic areas existing in Europe.

A summary of selected academic literature on the topic of trend estima-
tion is provided in Section 2. In Section 3, the method of non-parametric
estimation is introduced and in Section 4, the sieve bootstrap proposed by
[Bühlmann (1998)] is presented. The subsequent Section 5 describes the
data to which the two methods are applied. Results are given in Section 6.

1.2 Related Literature

In the academic literature, estimation of trends in temperature data has
become more and more popular over the last decades. This increase in
popularity is in line with the rising importance of the topic of global warming
all over the world. Various methods have been proposed, how a trend can be
extracted from time series data and how forecasting can be done on the basis
of this trend. Particularly, on the one hand, linear trend estimation or more
generally, parametric trend estimation, where the form of the trend is pre-
specified, has received a lot of attention from scientists. On the other hand,
some authors found that parametric estimation has a lot of limitations in
climatology and that a non-parametric approach might be more appropriate
for trend estimation in this field. First, a few results from research using
parametric estimation are presented and after this, the focus will switch
from parametric to non-parametric trend estimation for the remainder of
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this paper.

An important issue that researchers are confronted with when dealing
with temperature data is autocorrelation of the error terms, of which a for-
mal definition is given in Section 4. [Fomby and Vogelsang (2002)] address
this issue in depth and stress the significance of serial correlation in tem-
perature data. Wrong conclusions would be drawn, if serial correlation was
not taken into account. For example, without any measure to account for
autocorrelated errors, inference can be misled in a way that global warming
is expected to continue in the future, even when it actually does not. The
presence of serial correlation makes the use of standard t-tests invalid and
nothing can be said about the signifiance of the trend coefficients from a
regression. Using a Monte Carlo simulation, [Fomby and Vogelsang (2002)]
show that when serial correlation is strong, the t-test, as well as the autocor-
relation robust Newey-West estimator, tend to overreject the null hypothesis
of no global warming in favor of global warming, even when the data are
simulated from a process without a trend. In short, this means such tests
would provide spurious evidence of the presence of global warming in case
of strongly integrated errors.

To overcome this overrejection problem, [Fomby and Vogelsang (2002)]
review a recent test proposed by [Vogelsang (1998)], which is a trend test
that is robust to any kind of serial correlation. They apply this test to various
temperature series starting in the late 19th century, ending in the late 20th
century and they find a rejection of the null hypothesis of no significant
trend in all but one series. The conclusion they draw is that there has been
a rise in temperature of about 0.5◦C over the period mentioned. In this
paper, the non-parametric approach to be used deals with serial correlation
in a different way, using a bootstrap method to find confidence intervals.
This issue is discussed in Section 4.

A different result confirming an increase in temperature, in particular
over the 20th century, is provided by [Franses and Vogelsang (2005)]. They
use a similar parametric approach of linear trend estimation that avoids the
use of t-tests, but uses new critical values accounting for autocorrelation to
judge significance. This study analyzes a global temperature series that is
divided into 12 annual series - one for each month - showing that there is an
overall increase in global temperature, but that winters are getting warmer
faster. Similar results also hold for the United Kingdom and the Netherlands
[Franses and Vogelsang (2005)].

A final paper to be presented in this section on the topic of paramet-
ric trend estimation is a recent paper by [McKitrick and Vogelsang (2011)],
which investigates mean shifts in temperature data. When weather stations
move to a different location or when there is a change in the thermometers
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used, breaks can occur and it is important to model such shifts to avoid
biased results [McKitrick and Vogelsang (2011)]. The two authors model a
structural break at a pre-specified point in time and compare this model to
the same model without a break. They specify the break to be the Pacific
Climate Shift in 1977, which was a major change in temperature patterns
on the surface of the Pacific Ocean. [McKitrick and Vogelsang (2011)] esti-
mate their comparable models using lower- and mid-troposphere data rang-
ing from 1958 to 2010. The results of this study indicate that significant
trends become insignificant, once a mean shift is included in the model. To
be more specific, in the model without a mean shift, the null hypothesis
of no global warming is rejected, whereas in the model with a mean shift,
the same null hypothesis is not rejected [McKitrick and Vogelsang (2011)].
This analysis shows how sensitive the trend estimation is to the shape of
the trend being estimated.

To take this sensitivity into account, [Harvey and Mills (2003)] use non-
parametric trend estimation for Central England Temperature (CET) data.
After first using a parametric approach by fitting a quadratic trend, they
find that it is too restrictive to pre-specifiy a particular form of the trend in
advance, since usually the behavior of temperature data is more complex and
there is a need for a more flexible trend estimation. Non-parametric trend
estimation has this feature and the next section provides an introduction
to the theory behind this method. Applying a non-parametric method to
the CET data series, [Harvey and Mills (2003)] come to the conclusion that
there is no general upward trend in the CET data. However, they only
investigate data from England, so their analysis is much more restricted
than other studies using global data.

1.3 Non-parametric trend estimation

In the previous section about related literature, two major estimation tech-
niques have been distinguished: parametric and non-parametric regression.
This section focuses on the latter method and provides a reason, why this
method works well in the context of trend analysis in temperature data. To
see the main difference between the two approaches, it is important to note
how the regressors enter the regression equation in both methods. First,
consider a standard linear regression on a trend,

yt = α+ βt+ εt. (1.1)

Clearly, (1.1) is a parametric regression, as it specifies the series yt as a linear
function of a trend t. More specifically, this equation is a linear regression,
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where the dependent variable has to be a linear function of the parameters,
here α and β. Linear regressions are a specific form of parametric regres-
sions, which are very restrictive, since in the case of trend estimation, it is
assumed that the series linearly depends on some kind of trend. The regres-
sion provides an estimate of the coefficient β and a standard t-test could
be used to test significance, if the assumptions of ordinary least squares
regression apply. In short, the conditions on εt in ordinary least squares
regression are homoscedasticitiy and nonautocorrelation. They concern the
variance and covariance of the disturbances. Homoscedasticity assumes a
constant variance of the disturbance terms εt over time and nonautocor-
relation, in general terms, means that observations are not related over
time [Greene (2008)]. As already indicated in the previous section, the as-
sumptions do not hold for temperature data, as the random component of
temperature data at one point in time is dependent on this component for
other points in time. Thus, the error terms are serially correlated. This
is a serious problem for the determination of confidence intervals, which is
further addressed in the next section. For now, the focus lies on the form
of the equation.

In more general forms of parametric regression, the variable of interest
does not have to be a linear function of the parameters, but some pre-
specified function of the parameters and the independent variables. As a
second model, consider the following regression of the temperature on a
trend and a trend squared.

yt = ln(β1t+ β2t
2) + εt (1.2)

This equation is non-linear, because of the presence of the natural logarithm.
It still belongs to the class of parametric regressions, since the form of the
trend is specified before estimating the equation. To see the difference to
non-parametric regression, an equation that belongs to this class is

yt = g(t) + ut. (1.3)

Here, the error terms ut again contain serial correlation, which is taken into
account when obtaining confidence bands. They are called ut to be able
to distuingish them later on from the error terms of the other models. The
function g(t) is the trend component, which can take on almost any form
and is not specified in advance. The only assumptions made on g(t) are
assumptions concerning the smoothness of the function. Specifically, these
assumptions state that g(t) has to be twice continously differentiable as
well as that the first and second derivatives of g(t) are finite. This last
assumption can formally be stated as sup

∣∣g(j)(x)
∣∣ < ∞ for j = 0, 1, 2
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[Bühlmann (1998)]. Smoothness assumptions on g(t) are crucial, since oth-
erwise, the method of approximating this function by local weighted averages
would not work. An explanation of why this is the case can only be given
after an introduction of the principle underlying non-parametric estimation
and is postponed to the next section. It can be seen from (1.3) that esti-
mating this equation allows for a much more flexible inference of the trend
component. However, something has to be given up to get this additional
benefit and in this case, reliability and the simplicity of obtaining confidence
bands are sacrificed for the benefit of flexibility.

1.3.1 Local Estimators

Estimating the function g(t), or in a more genreal setting g(xt), where xt
for t = 1, ..., n is a regressor, is more complex than using ordinary least
squares estimation. Kernel estimation is one way to do this. In short, non-
parametric kernel estimation is a weighted least squares estimation with a
weighting function called the kernel function. Different kernel functions are
available for non-parametric estimation, but only one will be introduced in
this paper.

Consider a fixed point x. The function g(xt) needs to be estimated for
every point xt = x and the correspoding estimate is denoted by ĝ(x). In
the non-parametric approach, this in done by considering points in a certain
interval around x and taking a weighted average of points falling in this
interval. This weighted average is the estimator ĝ(x) and can generally be
written as

ĝ(x) =

∑n
t=1 k(xt−x

h )yt∑n
t=1 k(xt−x

h )
, (1.4)

where ĝ(x) is called local constant estimator and h is the bandwidth,
whose value has to be carefully chosen. The value of h determines the length
of the interval for the estimation, because for every x, only observations are
considered that fall in the interval [x− h, x+ h]. At the beginning and at
the end of the sample, one sided intervals are used. The kernel function k(u)
is formally defined in the following definition taken from [Hansen (2009)].

Definition 1. A second-order kernel function k(u) satisfies 0 ≤ k(u) ≤ ∞,
k(u) = k(−u),

∫∞
−∞ k(u)du = 1 and σ2

k =
∫∞
−∞ u2k(u)du <∞.

Basically, the kernel function is a symmetric and bounded probability
densitiy function. A frequently used kernel is the Gaussian kernel

kφ(u) =
1√
2π

exp(−u
2

2
), (1.5)
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which represents the Gaussian pdf. Roughly speaking, this kernel function
places a lot of weight on the point x, around which the estimation is done,
and gradually less weight is given to points further away from x. A similar
and also widely used kernel is the Epanechnikov kernel

k1(u) =
3

4
(1− u2)1{|u|≤1}. (1.6)

This kernel function has similar properties as the Gaussian kernel, since it
also puts the highest weight on x and decreasing weight on other points in
the interval. In comparison to the Gaussian kernel, this decrease in weight
is less pronounced with the Epanechnikov kernel. In the remainder of this
paper, the Epanechnikov kernel is used for the bandwidth selection and
kernel estimation.

At this stage, it is convenient to return to the question of why a smooth-
ness assumption on the function g(t) is important. Now, the basic principle
underlying non-parametric estimation has been introduced as locally approx-
imating the function g(t) by taking local weighted averages. This principle
only works, if g(t) is smooth. Imagine, for example, there was a jump in
g(t) at some point. Non-parametric estimation applied to this particular
point would not provide a reasonable approximation, because constructing
a weighted average of points within the interval [x− h, x+ h] would never
recover the jump, which actually is present in g(t). However, if the smooth-
ness assumption applies, non-parametric estimation works.

From a different perspective, the local constant estimator presented in
equation (1.4) is the result of the constant - α̂ - from a weighted regression
of yt on an intercept. Formally,

ĝ(x) = arg min
α

n∑
t=1

k(
xt − x
h

)(yt − α)2 (1.7)

is the local constant estimator.
An alternative to the estimator presented in (1.7) is the local linear

estimator, which is similar to the previous estimator, but instead of being
a constant approximation of g(x), it approximates it by a linear function.
Comparable to (1.7), the next equation shows a weighted least squares
problem of yt on a constant and a slope,

{
α̂(x), β̂(x)

}
= arg min

α,β

n∑
t=1

k(
xt − x
h

)(yt − α− β(xt − x))2, (1.8)

where α̂ is the local linear estimator of g(x) [Hansen (2009)].
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1.3.2 Bandwidth selection

As already indicated, the value of the bandwidth has to be carefully selected
and plays an important role. For larger values of h, both estimators become
more smooth and for smaller values of h, they become less smooth. There-
fore, simply choosing a value for the bandwidth at random is not an option.
A value should be taken that results in a good fit of the regression. How-
ever, in this setting, a problem of overfitting can easily arise, as for h→ 0, a
perfect fit is obtained. Just taking the scatter plot of yt - as it is done when
h→ 0 - is not the goal of non-parametric estimation. This shows that min-
imizing the mean-squared error is not an option, either. A way around this
problem is provided by the leave-one-out residuals [Hansen (2009)]. But be-
fore explaning this solution in detail, one formal assumption on h has to be
introduced. This assumption deals with increasing sample sizes. Intuitively,
as n grows large, a larger value for h should be selected to account for the
increase in the number of observations. Formally, the order of h should be
h(n) ∼ n−1/5 [Bühlmann (1998)].

The leave-one-out estimator, g̃−t(x), leaves the observation out that
receives the most weight in the regression so that overfitting is avoided.
Without loss of generality, it is assumed that the observation with the highest
weight is observation t and the leave-one-out estimator is

ỹt = g̃−t(xt) =

∑
i 6=t k(xi−xt

h )yi∑
i 6=t k(xi−xt

h )
(1.9)

for yt at the fixed point x = xt. The leave-one-out residuals are defined to be
ẽt = yt − ỹt and present an adequate alternative measure of the goodness
of fit. In contrast to the normal residuals, êt, it is possible to minimize
the leave-one-out residuals over different values of h, without automatically
overfitting the regression. The optimal value for h is selected by minimizing
the mean squared leave-one-out error as a function of h, which is called the
cross-validation criterion [Hansen (2009)],

CV (h) =
1

n

n∑
t=1

ẽt(h)2. (1.10)

After the optimal bandwidth has been found, the local constant or the local
linear estimator can be used to non-parametrically estimate a trend in a
given series of temperature data.
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1.3.3 Application to temperature data

In the introduction of non-parametric estimation, it has been mentioned
that a major advantage of using this approach is flexibility. Since no partic-
ular form of a trend has to be determined in advance, fewer assumptions are
made than in a parametric approach. Obviously, a linear regression like equa-
tion (1.1) makes an extreme assumption concerning the form of the trend.
It assumes that a linear relationship between the temperature series and a
deterministic trend accurately describes the properties of this series. Other-
wise, this model would not be appropriate. This is a restrictive assumption
and it has been argued that temperature data have a much more complex
structure [Harvey and Mills (2003)]. A few simple examples can be thought
of to underline this argument. In particular, there is no reason to assume
that a linear trend, which by definition has a constant slope, is adequate
in this context. A constant slope means that an increase in temperature
would be equally fast over the whole period. However, the development of
warming can differ for summer and winter or from one subperiod to another.
In addtion - as studied by [McKitrick and Vogelsang (2011)] - there can be
breaks in global warming. Climate shifts are not considered in a linear trend
model, unless the model is expicitly changed to take them into account.

These examples show that flexibility of non-parametric kernel estima-
tion is beneficial in the context of temperature data, because the complex
structure can be taken into account. Nevertheless, the benefit of flexibility
comes at a cost. The results from non-parametric estimation are less reli-
able than using a simple parametric approach and it is difficult to judge the
significance of these estimates. This topic is addressed in the next section.

1.4 Constructing Confidence Intervals

In the context of temperature data, autocorrelated error terms are an im-
portant issue. There clearly exists a dependence of the error terms over
different observations. Considering again the simple model (1.1), fit on a
series of monthly temperature data, it is hard to believe that a huge devia-
tion from the trend in one month is completely independent of a deviation
in the previous months or in the subsequent months. This is because the
temperature on one day depends on the temperature on the preceding day
and this will, in turn, influence the temperature on the next day. This de-
pendence is carried over to monthly data. A formal definition of the concept
of autocorrelation is given by Definition 2.

Definition 2. A time series is called autocorrelated, if Cov[εt, εt−j ] 6= 0 for
some j 6= 0.
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Nonautocorrelation is one of the assumptions underlying ordinary least
squares regression and as soon as this assumption does not hold, a measure
has to be taken to account for this missing assumption. Without account-
ing for this problem, spurious evidence for a trend in the data is likely to
be the outcome. In the academic literature, various measures against au-
tocorrelation have been suggested. Among these measures are using an
autocorrealtion robust estimator like the Newey-West estimator, a new es-
timator proposed [Vogelsang (1998)] or fitting an appropriate ARMA(p,q)
model. As mentioned in Section 2, some of these measures do not work
well with temperature data. In particular, applying a Newey-West esti-
mator might lead to overrejection of a true null hypothesis and similar to
using a standard t-test, false evidence of global warming could be created
[Fomby and Vogelsang (2002)]. This is a result of judging the significance
of an estimator, using inaccurate confidence intervals.

A different way of dealing with serial correlation is applying a bootstrap
method to obtain confidence intervals. In general, bootstrap is the name of
a method that takes random samples of the data with replacement to be able
to make inference about the distribution of a test statistic. In other words,
this method resamples from the sample. Usually, confidence intervals are de-
termined using the asymptotic distribution of an estimator. In the presence
of serial correlation, this is difficult and an additional complication exists
when dealing with non-parametric estimators. The asympotic distribution
of a non-parametric estimator is non-trivially biased [Hansen (2009)]. This
makes asympotitic distributions infeasible to construct confidence bands,
since it is impossible to account for this bias without a significant loss of
precision. Applying a bootstrap method to get information about the distri-
bution of the estimator solves this problem. A quote taken from a chapter
by [Horowitz (2001)] describes, how a general bootstap method works.

”It amounts to treating the data as if they were the popu-
lation for the purpose of evaluating the distribution of inter-
est.”(Horrowitz, 2009, p.1)

This quote gives an intution of the principle underlying the method. Instead
of using mathematical tools to calculate the asympotitc distribution, the
data is used to construct bootstrap samples, which, in turn, are used to
make inference about a particular test statistic or distribution.

Many different methods of bootstrapping exist. Although it is usually
referred to ”the bootstrap”, it is important to distinguish between alterna-
tive methods, as some might be more or less appropriate in certain cases
[McKinnon (2006)]. In general, two main classes of bootstrap methods are
parametric and non-parametric bootstrap. A parametric bootstrap method



20 CHAPTER 1. NON–PARAMETRIC INFERENCE

is used when the distribution of the data is known, but the parameters spec-
ifying this distrubtion are unknown. If no information about the distribution
exists, a non-parametric bootstrap should be used [Smeekes (2009)]. In the
context of this paper, the second method applies so that in the remainder,
the focus is on non-parametric bootstrap methods. Among these methods
are the i.i.d. bootstrap, the block bootstrap and the sieve bootstrap. The
abbreviation i.i.d. stands for indepentent and identically distributed and
summarizes two characteristics that data can have. First, the observations
are mutually independent and second, they come from the same distribu-
tion. The i.i.d. bootstrap is a standard method, which is only valid when
it is applied to i.i.d. data. An algorithm of this method is presented below.
The basic idea underlying the block bootstrap is shortly presented in the
next section, whereas the main topic of this section is the sieve bootstrap.
The i.i.d. bootstrap can be summarized in three steps.

• Step 1
From the data (x1, x2, ..., xn), draw a bootstrap sample (x∗1, x

∗
2, ..., x

∗
n)

randomly and with replacement.

• Step 2
Apply the statistic of interest, Tn, to the bootstrap sample and obtain

T ∗n = Tn(x∗1, x
∗
2, ..., x

∗
n).

• Step 3
Produce B replications of Step 1 and Step 2 with T ∗n,b denoting the
statistic applied to the bth bootstrap replication. Compute

1

B

B∑
i=1

I(T ∗n,b ≤ x)

to estimate the distribution of the statistic Tn, which is dependent on
the distribution of the data.

1.4.1 Bootstrapping Time Series Data

Not every bootstrap method can be used with time series data. In the case
of temperature data, a method has to be applied that can keep the de-
pendence structure that exists in the data over the sample period. Simply
resampling with replacement would lead to a loss of the dependence struc-
ture [Smeekes (2009)]. In particular, a block bootstrap or a sieve bootstrap
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can be applied in this context. Both methods deal with serially correlated,
stationary time series data. The idea behind the block bootstrap is that
blocks are resampled instead of single observations so that the structure is
maintained within these blocks. The focus in this paper, however, lies on
the sieve bootstrap proposed by [Bühlmann (1998)]. The basic idea under-
lying this method substantially differs from the idea of the block bootstrap.
In the sieve bootstrap, the dependece structure of the data is estimated
with an appropriate model and by using the residuals of this estimation, the
dependence structure can be neglected and an i.i.d. bootstrap approach can
be used [Smeekes (2009)].

The Sieve Bootstrap

The bootstrap algorithm underlying the sieve bootstrap by [Bühlmann (1998)]
consists of four steps. For a better understanding of the notation used, re-
call equation (1.3), yt = g(t) + ut. This equation can be estimated using a
local constant or local linear estimator to obtain ĝ(t). Bootstrap quantities
are denoted by an asterisk as superscript.

• Step 1
Form the residuals from the estimation of the series on the non-
parametric trend. This means, calculate

ût = yt − g̃(t), t = 1, ..., n,

where the estimate g̃(t) can be obtained by either using the same
estimation as in the previous section, ĝ(t) - or a new estimation using
a different bandwidth h̃. When a different bandwidth is used, the new
bandwidth h̃ can be obtained from the old bandwidth, h, using the
relation

h̃ = Ch5/9, C = 1/2, 1, 2.

• Step 2
To the residuals ût for t = 1, ..., n, fit an autoregressive model of order
p and form the new series of residuals

ε̂t = ût −
p∑
j=1

φ̂j ût−j , t = p+ 1, ..., n.

Subtract the mean ε̄ = 1
n−p

∑n
t=p+t ε̂t to form ε̃t = ε̂t − ε̄.
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• Step 3
Draw randomly with replacement from ε̃t to obtain ε∗t .

• Step 4
Calculate the boostrap errors u∗t as

u∗t =

p∑
t=1

φ̂ju
∗
t−j + ε∗t .

Now, generate the bootstrap observations by

y∗t = g̃(t) + u∗t , t = 1, ..., n,

where g̃(t) is the same estimated value as in the first step.

Steps 3 and 4 are repeated B times, where B stands for the number of
replications. The more replications are generated, the higher the precision
of the estimation, but the more time is needed to do the computations
[Smeekes (2009)]. Furthermore, in Step 1, a different bandwidth than dur-
ing the non-parametric estimation can be used. [Bühlmann (1998)] sug-
gests that the new bandwidth, h̃, should be related to the original band-
width, h, by h̃ = Ch5/9, where C = 1/2, 1 or 2. In his simulation results
[Bühlmann (1998)] shows that setting C = 1/2 is appropriate.
There are three assumptions about the noise process underlying the method
by [Bühlmann (1998)]. First, the moments of εt are finite up to the fourth

moment. Formally, E |εt|4 <∞ has to hold. Second, an assumption is made
about the summability of the lag coefficients of the AR model. In partic-
ular,

∑∞
j=0 j |φj | < ∞ is the formal assumption and states that there has

to be an appropriate decay of the lag coefficients. Intuitively, this means a
lower contribution to the AR model of values that are far in the past. Third,
[Bühlmann (1998)] assumes that, as the AR(p) model is an approximation of
the infinite order AR(∞) model, the lag specification p has to increase with
n at a certain speed. This assumption is presented in [Bühlmann (1998)] as

p(n) = o
(

min
{

(n/log(n))1/4, (nh̃)1/4, h̃−1
})

, for n→∞.

In the application of the steps presented above, this is accounted for by
taking a maximum value of p, which is dependent on the sample size and
equals 10 log10(n).
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Pointwise Confidence Intervals

The non-parametric estimator, which is used to obtain ĝ(t), is applied to all
B series of bootstrap observations y∗t to obtain ĝ∗(t) and for every point
t, the deviations of these B esimations to the value g̃(t) are determined.
The value g̃(t) is set to be the true value in this case. The deviations are
ordered from the largest negative to the highest positive deviation from the
true value. From these ordered series, it is straightforward to determine the
values for the pointwise two-sided confidence interval for a confidence level
of 1− α. These are exactly the values for every t, between which 1− α of
the deviations fall. Formally, this can be stated as

I∗(t, 1− α) =
[
ĝ(t)− q̂1−α/2, ĝ(t)− q̂α/2

]
, (1.11)

where 1−α is the confidence level and q̂α = inf {u;P ∗ [ĝ∗(t)− g̃(t) ≤ u] ≥ α}.
From equation (1.11), it can be seen that the confidence bands only apply to
a certain t, showing that they are only valid for this particular point in time.
In trend estimation, this is not particularly useful, as the focus is not on the
accuracy of the estimation of single observations, but on the estimation of
the behavior over time. To achieve this, simultaneous confidence intervals
are needed.

Simultaneous Confidence Intervals

Simultaneous confidence intervals are calculated for every point in time,
but they are valid for either a certain neighborhood G or for the whole
time covered by the sample. In this case G is simply set to contain the
whole sample [Bühlmann (1998)]. This is the main difference to pointwise
confidence intervals, which are only valid for one single observation.

The first step to obtain these intervals for a confidence level of 1 − α
is similar to the calculation of pointwise bootstrap quantiles presented in
the previous section. The additional step is that this is done for vary-
ing values of αp according to an analogous formula than stated above,
q̂αp = inf {u;P ∗ [ĝ∗(t)− g̃(t) ≤ u] ≥ αp}. In addition, these quantiles are
obtained for every point in the neighborhood G. Note that G may contain
the whole sample, which is assumed throughout this paper. This step pro-
vides a pair of quantiles - q̂αp/2(t), q̂1−αp/2(t) - for every t ∈ G and for every
αp under consideration. The values of αp range from 1/B to a final value
of α in increments of 1/B. In a second step, the value of αp is selected,
which guarantees that a fraction of around 1− α of all bootstrap series are
completely within the corresponding intervals

[
q̂αp/2(t), q̂1−αp/2(t)

]
for all

t ∈ G. Formally, this can be stated as to select the value of αp such that

P ∗
[
q̂αp/2(t) ≤ ĝ∗(t)− g̃(t) ≤ q̂1−αp/2(t) ∀x ∈ G

]
≈ 1− α (1.12)
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is satisfied. This optimal value of αp is then denoted by αs and used to
construct the simultanoues confidence bands as in [Bühlmann (1998)]

In(t) = m̂(t)− q̂1−αs/2(t), m̂(t)− q̂αs/2(t), x ∈ G. (1.13)

1.5 The Data

Non-parametric trend estimation and the sieve bootstrap method are applied
to several series of temperature data from Europe. The data are taken
from the European Climate Assessment & Dataset (ECA&D), which was
founded in 1998 by the European Climate Support Network (ECSN). This
Network supports the 25 members in their climate analysis and helps to
provide the users of this network with climate services and products. The
dataset was updated in April 2012 and contains data on changes in weather
extremes from 62 countries. Series on temperature data are available at a
daily frequency for various time periods and for stations all over Europe.
In order to provide time series data that is as complete as possible, all
data is available as blended and non-blended series. The blended series are
more complete than non-blended series, as missing values are taken from
neighboring stations that are at most 12.5 km away from the original station.
Furthermore, the height difference between the stations should not exceed
25 m. All series used in this paper are taken from the blended data set,
since having a (nearly) complete dataset is important for trend estimation.

In addition, the daily data are averaged monthly in order to reduce
volatility and the impact of missing daily data. For non-parametric esti-
mation to be as accurate as possible, it is crucial to have time series data
with many observations, which cover a sufficient period of time. The tem-
perature series considered in this paper might have different ranges, since
having exactly the same range for all series does not add any benefit to
the results. However, most of the series start after World War II, because
for many cities, temperature series were not available or complete for some
years during the war. There is one exception to this range, which is the
Czech city of Prague. This series starts in the late 18th century and pro-
vides seamless daily data until the end of 2004, which makes it particularly
interesting to study. With this range, this city provides the series with the
largest number of observations availabe in this dataset and therefore, it is
the only series used to study a trend in temperature during the full range
of the 19th and 20th century. The other series analyzed are obtained from
weather stations in Perpignan, Zurich, Lerwick, St.Petersburg, Hannover,
Karlstad and Prague.

To seasonally adjust the data, averages are constructed for every month
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using the data for a particular month over the whole sample. These averages
are subtracted from the corresponding observations in the sample and these
differences constitute the adjusted series, which is used for the estimation
and the application of the bootstrap. Important information regarding the
series is summarized in Table 1.1. The sample periods, given in the third
column of Table 1.1, start in January of the first year and end in December
of the final year. The number of observations in the next column are stated
in unit of months.

City Country Range Obs.
Hannover Germany 1946-2011 792
Karlstad Sweden 1950-2011 744
Lerwick Scotland 1945-2011 804
Perpignan France 1946-2011 792
Prague Czech Republic 1775-2004 2760
St.Petersburg Russia 1943-2011 828
Zurich Switzerland 1901-2009 1308

Table 1.1: Stations to be analyzed

Table 1.2 presents some descriptive statistics on the series. It shows that
the selected series are diverse and reflect different geographic and climatic
areas, since some of them differ substantially in mean temperature, as well
as in minimal and maximal values. All temperature values in Table 1.2 are
given in ◦C and are calculated from monthly averages, which are not yet
seasonally adjusted. The reason to use monthly averages to give descriptive
statistics is to filter out some extreme values and to reduce volatility, as with
daily data the standard deviation would be extremely high and the minimal
and maximal values would be given by some extreme values. Furthermore,
daily data series are usually incomplete, since some daily values are missing
or are classified as unreliable. However, the number of missing values in the
series analyzed was kept within a limit of 2 values per month and a maximum
of 17 values for a complete series. Some series - like the one from Prague,
Hannover, Perpignan and Zurich - had no missing values. The values in the
final column are not given in ◦C, since this column presents the first order
estimated autocorrelation coefficient for each series. For all series, these
coefficients lie between 0.8 and 0.83.

To give an impression about how a typical correlogram looks like, Figure
1.1a plots the estimated autocorrelation of the Hannover series and Figure
1.1c does the same for the Perpignan data. Figure 1.1b and Figure 1.1d
display the corresponding partial autocorrelations. The two autoccorelation
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(a) Autocorrelation Hannover (b) Partian Autocorrelation Hannover

(c) Autocorrelation Perpignan (d) Partial Autocorrelation Perpignan

Figure 1.1: Correlograms of Hannover and Perpignan

City Mean Max Min Std.Dev. AR(1) coeff.
Hannover 9.12 22.31 -9.32 6.36 0.806
Karlstad 5.93 20.51 -13.45 7.69 0.825
Lerwick 7.20 14.37 -0.34 3.34 0.809
Perpignan 15.51 27.61 1.56 5.74 0.827
Prague 9.60 25.05 -10.92 7.63 0.825
St.Petersburg 5.17 24.46 -17.94 9.17 0.819
Zurich 8.94 22.73 -8.73 6.69 0.812

Table 1.2: Descriptive Statistics (values in ◦C) - monthly averages

figures show an almost identical pattern of wave-like autocorrelation for lags
up to a number of 36. The two figures presenting the partial autocorrelation
show a decay after a few lags and some significant spikes for longer lags.
They are also comparable for the two series. An inspection of correlograms
for the other five series shows that the pattern is almost the same for all
series.

Coming back to Table 1.2, with a standard deviation of 9.17◦C, the
series of St.Petersburg is the most volatile one in this set. The highest
monthly average of 24.26◦C for St.Petersburg is a July observation from
2010, whereas its month on average is January 1987 with an average of -
17.94◦C. At the same time, this observation is the lowest monthly average of



1.6. RESULTS 27

all considered series. The highest monthly average of 27.61◦C was reached
in July 2006 in Perpignan, which is not surprising, as it is the most southern
city studied in this paper.

1.6 Results

This section presents results of the application of the non-parametric local
constant and local linear estimators to the data described in the previous
section. On the basis of these estimates, the sieve bootstrap method is
used to construct simultaneous confidence intervals for the trend functions.
The local constant estimator is applied to the complete set of temperature
series as presented in Section 5, whereas the local linear estimator is only
applied to the series of Hannover and Perpignan. For these two series, the
two estimators provide very similar trend estimations, suggesting that it is
not a major limitation to rely on the local constant estimator for the five
remaining series. Furthermore, according to [Hansen (2009)], none of the
two estimators is strictly outperformed by the other.

The whole analysis presented in this paper is done under the main-
tained assumption of stationary data. This is underlined by a state-
ment concerning the stationarity of temperature data taken from
[Fomby and Vogelsang (2002)]. In this paper, it is stated that ”nonstation-
arity can be ruled out on scientific grounds” ([Fomby and Vogelsang (2002)],
p.120). A visual inspection of all the series and a unit root test further sup-
port this maintained assumption. An Augmented Dickey-Fuller unit root
test has been conducted on the series - including an intercept and a trend -
showing that the null hypothesis of having a unit root in the data is rejected
at a 1% significance level for all series.

In the remainder of this section, a plot of the monthly averaged data
is presented, combined with a fitted linear trend. In addition, for every
series, two graphs present the results of the non-parametric local constant
estimation. One graph includes the estimator, the simultaneous confidence
intervals and the actual data, while the other graph does not plot the actual
data to enable a better examination of the form of the trend. For the two
series of Hannover and Perpignan, the local linear estimation is presented
in a similar fashion.

Figures 1.2 to 1.3 plot the seasonally adjusted monthly data including a
linear trend. The linear trend has been estimated according to model (1.1),
presented in Section 3, where the residuals of this estimation are serially
correlated for all series. The estimate of the linear trend coefficient β is
presented underneath the corresponding figure using ordinary least squares
regression. To take serial correlation into account, the standard deviation in
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brackets is obtained using the autocorrelation robust Newey-West estimator.
For all seven series, the trend coefficient is extremely small and not

significantly different from zero according to the Newey-West standard de-
viation - using a 5% significance level. This would provide evidence of no
global warming for the cities studied in this paper. However, allowing for
a more flexible trend function changes these results, as can be seen in the
next section.

1.6.1 Local Constant Estimation Results

The local constant estimator is applied to all seven series and this section,
as described above, presents two plots for every city. It also provides the
bandwidth used to obtain the estimation and the order of the AR(p) model
selected during the process of the sieve bootstrap method. The first plot
always includes the actual, seasonally adjusted data to present a first im-
pression of the trend function next to the series. The second graph leaves
out the actual data and only plots the non-parametric estimation together
with the simultaneous confidence bands to allow a clear observation of the
specific form of each trend function. All results are obtained using the
Epanechnikov kernel function. As already mentioned, at the beginning and
at the end of the sample, only one-sided or truncated intervals are used and
this is why there is a more or less visible widening of the confidence bands
for all series.

The bandwidth was carefully selected using the cross-validation criterion.
As a solution to the minimization problem can only be found numerically,
this is done by minimizing this criterion over a suitable range for h, which
should not include unreasonably small values [Hansen (2009)]. Formally,
[Hansen (2009)] states this as

ĥ = argmin
h≥hl

CV (h),

where a value for hl > 0 has to be chosen manually for every series. The
selection of hl has been done using plots of CV (h) against different ranges
of h. An example of such a plot is given for the Hannover data in Figure
1.4a. In this case, the range of h goes from 40 to 340 and clearly, the
starting value of 40 is too small. A value of around hl = 80 should be
chosen to avoid an unreasonably small value for h to be selected. Taking
this into account, the optimal bandwith for Hannover equals 238. However,
this value will not be selected using the range of Figure 1.4a, because the
minimum is attained at 40. This would lead to an estimation which is less
smooth than the one using h = 238. Figure 1.4b plots the values of CV (h)
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for h ranging from 80 to 380 and shows that this is a much more appropriate
range. Using this range, the optimal value of 238 can finally be chosen with
the help of the CV criterion.

After estimating the trend using an appropriate bandwidth, the sieve
bootstrap method is applied according to the four step algorithm presented
in Section 4. The residuals in Step 1 are calculated using the same band-
width as determined by the cross-validation criterion for the non-parametric
estimation. Applying h̃ = Ch5/9 with C = 1

2 as suggested by
[Bühlmann (1998)] does not provide significantly different results than us-
ing the same value of h as for the determination of ĝ(t).

Figure 1.5 presents the results of Hannover. The value of the bandwidth
is, as already mentioned, h = 238 and the lag length is p = 26 months.
In general, these values are given in brackets below the graphs. The two
graphs show that since the middle of the 20th century, there has been an
upward trend in temperature for the city of Hannover. This result could
not be extracted using linear trend estimation. Before around 1965, a slight
downward trend is visible and for the most recent years, there is indica-
tion of a deceleration of the trend. The pattern that is exhibited by the
Hannover series can be recognized in the graphs of some other cities. In
particular, Figure 1.6 and Figure 1.7 show a similar trend for Lerwick and
Perpignan. There, the upward trend starts a few years later as in Hannover -
around 1970 in Lerwick and 1975 in Perpignan - and is preceded by a more
pronounced downward trend since the start of the two series in 1945. A
downward trend would actually be associated with a period of global cool-
ing. The series of Lerwick does not show a recent slowdown of the trend,
whereas for Perpignan, the increase in temperature seems to slightly decel-
erate. Whether this represents an actual slowdown can only be seen in the
future.

The trend function of Zurich is estimated over a longer period than
the ones of Hannover, Lerwick and Perpignan and is presented in Figure
1.8. However, over the period that these four series have in common -
from 1945 to 2009 - the form of the trend in Zurich temperature data is
comparable to the other three series. A period of global cooling until around
1970 is followed by an upward trend, indicating a period of global warming.
Unfortunately, more recent data on this series is not available in the dataset
used. The period between 1901 and 1945 is characterized by an upward
trend, which is not as strong as the one occuring after 1970.

A different pattern can be seen in Figure 1.9 for St.Petersburg. This
series displays a trend after a 20 year period of stagnation. For this series,
global warming seems to take place at an almost constant pace after 1960
and no deceleration can be observed. This is in contrast to the trend esti-
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mation of Karlstad displayed in Figure 1.10. This most nothern city among
the seven series shows the highest variation, although bandwidth and range
are in the same order as for Perpignan. In addition, the simultaneous confi-
dence bands are wider as for all the other series. This may be an indication
of lower precision of the estimation. The range of values that the estimation
is likely to be located in is much larger. For this series, it might be better
to use a larger sample, which is not available in the dataset used. Looking
at the form of the trend for this series, there does not seem to be a period
of continued global warming or cooling. An upward trend started in the
early 1980s, but it flattens out rapidly after less than 20 years. Overall, this
estimation shows a completely different form compared to all other trend
functions and has to be interpreted with care, as the confidence intervals
are relatively wide.

The series of Prague by far covers the longest period of the seven series.
It starts in 1775 and ends in 2004. The beginning of the period studied is
characterized by an upward trend until 1800, followed by a downward trend
and a period of stagnation until around 1900. Since 1900, the estimated
trend function is increasing with a rise in the slope of this function in 1980.
This suggests that in Prague, a period of global warming started in 1900
and is still continuing in 2011.

Overall, the trend functions estimated non-parametrically show a com-
plex structure and most temperature series exhibit an upward trend over at
least part of the period studied. For most of the cities, this upward trend
started in the near past and seemed to persist until the end of 2011. None of
the series showed a significant upward trend, when estimated using a linear
trend. This clearly underlines the limitations of this approach. Some of the
trends could probably have been recovered fitting a quadratic trend. In par-
ticular, the series of Perpignan and Lerwick display a near parabolic shape.
However, this form has to be known or at least assumed before estimating a
quadratic trend, whereas with non-parametric estimation, no knowledge or
assumptions about the form of the trend have to be present. In the case of
the Prague series, which covers a long period and contains a lot of obser-
vations, the complex shape of the trend function could most likely not have
been recovered using some form of parametric trend estimation.

The analysis of this section together with the results of the linear trend
estimation emphasize the advantage of non-parametric estimation. The
flexibility of this estimation technique makes it possible to extract any form
of a trend and no knowledge is needed in advance about a possible shape
of the trend. After obtaining the results of non-parametric estimation, it is,
of course, possible to conclude that this shape could have been estimated
using a different, parametric approach. But this is only possible after having
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observed the results of the approach advocated in this paper.

1.6.2 Local Linear Estimation Results

In the previous section, the results of the non-parametric approach have been
presented using the local constant estimator as presented in Section 3.1.
This section shows results of the local linear estimator, which was introduced
in the same section. The main difference between the two estimators is that
a local constant estimator approximates g(x) for every x by a constant
function, whereas the local linear estimator does the same by using a linear
function. It has been argued by [Hansen (2009)] that it is not obvious which
one of the two estimators should be used, because none of them performs
strictly better than the other. There is indication of a better performance by
the local linear estimator, when the function to be estimated is significantly
non-constant. Similarly, the local constant estimator seems to outperform
the local linear estimator, when the shape of the function is almost constant
[Hansen (2009)].

This section presents the results of applying the local linear estimator to
two out of the seven data series. In particular, results are given for the two
cities of Hannover and Perpignan. The way this is done is similar to how the
local constant estimation results have been presented. Each figure contains
two graphs, one including the data, the estimation and the confidence bands
and a second graph leaving out the data. From Figure 1.12 it can be inferred
that the estimation results of Hannover are comparable to the results of the
local constant estimation for this series. The trend has a very similar shape
to the one in Figure 1.5, only the confidence bands widen even more at
the beginning and at the end of the series with the local linear estimation.
Similarly, Figure 1.13 displays a trend function almost identical to Figure
1.7 but with an extreme widening of the confidence bands.

Overall, for these two series, the two different estimation techniques do
not show significanlty different results. Due to computational limitations,
the local linear estimator is not applied to the remaining five data series.
However, more evidence has been collected in order to show the importance
of flexibility in trend estimation. Both approaches - local linear and local
constant estimation - show a complex form of the trend in these series of
temperature data.
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(a) Hannover, β̂ = 0.001934(0.001404)

(b) Karlstad, β̂ = 0.0010041(0.001853)

(c) Lerwick, β̂ = 0.000897(0.000178)

(d) Perpignan, β̂ = 0.00897(0.001286)

Figure 1.2: The data and a linear trend estimation
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(a) Prague, β̂ = 0.000267(0.000178)

(b) St.Petersburg, β̂ = 0.002438(0.001868)

(c) Zurich, β̂ = 0.000577(0.000578)

Figure 1.3: The data and a linear trend estimation - continued
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(a) h ranging from 40 to 340 (b) h ranging from 80 to 380

Figure 1.4: Example of Crossvalidation Minimization for the Hannover Series

(a) Local constant estimator and actual data
(h = 238, p = 26)

(b) Local constant estimator (h = 238, p =
26)

Figure 1.5: Local constant estimation of the Hannover series

(a) Local constant estimator and actual data
(h = 222, p = 3)

(b) Local constant estimator (h = 222, p =
3)

Figure 1.6: Local constant estimation of the Lerwick series
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(a) Local constant estimator and actual data
(h = 120, p = 4)

(b) Local constant estimator (h = 120, p =
4)

Figure 1.7: Local constant estimation of the Perpignan series

(a) Local constant estimator and actual data
(h = 223,p = 2)

(b) Local constant estimator (h = 223,p =
2)

Figure 1.8: Local constant estimation of the Zurich series

(a) Local constant estimator and actual data
(h = 229.5,p = 2)

(b) Local constant estimator (h = 229.5,p =
2)

Figure 1.9: Local constant estimation of the St.Petersburg series
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(a) Local constant estimator and actual data
(h = 114, p = 1)

(b) Local constant estimator (h = 114, p =
1)

Figure 1.10: Local constant estimation of the Karlstad series

(a) Local constant estimator and actual data
(h = 224, p = 2)

(b) Local constant estimator (h = 224, p =
2)

Figure 1.11: Local constant estimation of the Prague series

(a) Local linear estimator and actual data
(h = 299, p = 26)

(b) Local linear estimator (h = 299, p = 26)

Figure 1.12: Local linear estimation of the Hannover series
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(a) Local linear estimator and actual data
(h = 119, p = 4)

(b) Local linear estimator (h = 119, p = 4)

Figure 1.13: Local linear estimation of the Perpignan series
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1.7 Conclusion

In this paper, non-parametric kernel estimation in combination with a sieve
bootstrap method have been introduced. First, these two methods have
been presented on a theoretical basis and second, they have been applied
to seven series of temperature data. On theoretic grounds, the advantages
of this approach have been argued to be a major gain in flexibility and the
fact that valid confidence intervals for the non-parametric estimator can be
found in the presence of serial correaltion. Particularly, the construction
of confidence intervals around a non-parametric estimator is challenging,
because the asymptotic distribution of such an estimator is non-trivially bi-
ased. This problem is avoided by using a bootstrap approach. Nevertheless,
a bootstrap approach has to be carefully selected in this context. With de-
pendent time series data, such a method has to maintain the dependence
structure within the data. The sieve bootstrap method achieves this goal
by estimating the dependence structure and using the residuals of this esti-
mation for the resampling process. The validity of this approach has been
shown in [Bühlmann (1998)].

The application to temperature data of different areas in Europe un-
derlines the importance of flexibility. Fitting a linear trend to the seven
series results in an insignificant trend coefficient for all series. This gives
the impression that no global warming occured over the period. However,
applying the non-parametric approach reveals a complex shape of the trend
functions, which includes a period of global warming for most series. The
series of Hannover, Perpignan, Lerwick and parts of the Zurich series display
a similar trend pattern. After a period of global cooling, an upward trend
begins, indicating the presence of global warming. The point in time, where
the downward trend turns to an upward trend is different for the series men-
tioned - varying from 1965 to 1975. The series of St.Petersburg and Prague
also show a period of global warming, but the pattern is slightly different.
In St.Petersburg, an upward trend started after a period of stagnation in
1970 and in Prague, there has been a continuing upward trend after around
1900. The series of Lerwick constitutes an exception, since the confidence
bands are wider than for all the other series, the reason of which remains
an open question.

The whole analysis in this paper presents evidence on the complexity of
trend estimation in temperature data. Trend estimation has been shown to
be extremely sensitive to the form of the estimated trend. It has been argued
that non-parametric estimation does not specifiy a form of a trend before
estimating and is therefore able to reveal any form of a trend that is present
in the data. Parametric trend estimation in general and linear trend estima-
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tion in particular do not take this complexity and sensitivity into account.
The question that remains is why institutions like the IPCC still rely on these
methods despite such major drawbacks. The topic of trend estimation in
temperature data has to be carefully analyzed, because its interpretation can
have widespread consequences on global warming. Environmental politics
relies on such estimates when making important decisions concerning future
activies against global warming. Therefore, it might be advisable to add
non-parametric inference to the set of tools, when estimating temperature
trends.
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