
Summary

Imagine a car garage with three car lifts that can be used to lift a car so
it can be repaired. All the time, customers are coming in with their broken
cars. Some are very broken and need a lot of time to repair while others
may only need a short amount of time. The manager of the garage needs
to decide which cars he is going to repair first. His goal is to get the most
cars out of his garage as fast as possible.

Unfortunately, deciding what cars to repair first is a very hard problem. It
is comparable to solving the famous Travelling Salesperson Problem, where
a businessperson has to to visit a lot of cities and wants to find the shortest
route between them.

A simple way of deciding the order of repairing the cars is starting with
the cars that will take the shortest time to repair, and leave the longer
repairs for later. This may seem like a very logical rule, but it may produce
a repair schedule that is not ideal. But, how far from ideal could this simple
schedule be? That is the main topic of my thesis.

In the thesis, I first explain what research has been done already on the
subject. Then I use the program I wrote to make schedules using the simple
rule and optimal schedules for a lot of examples. What I found out is that
the examples where the difference between the two schedules is the largest
all look similar. Finally, I analyze the general form of the examples with
large differences. I show in the paper that when we restrict ourselves to the
form of the examples with the largest differences, the simple rule schedule
can be at most 1,105 times worse than the ideal schedule. In practice, this
means that at the very worst, the cars in the garage will only have to stay
10,5% longer in the garage.

This last result is new and if someone can prove that the form of the
examples I found is indeed the worst form of example, we know that the
simple rule produces quite well preforming schedules that can be at most
1,105 times worse than the ideal schedule. Then, if the small factor of
1,105 is not a problem, garage managers and other people who encounter
problems like this can apply the ”short jobs first” rule with confidence.

66 CHAPTER 3. PREEMPTIVE SCHEDULING

3.1 Introduction

In this paper, I will study the shortest remaining running time algorithm for
preemptive scheduling. SRPT, which stand for Shortest Remaining Process-
ing Time, is a well-known and simple online procedure to generate a feasible
schedules for instances of this type of problem.

Recently, it has been shown that the competitive ratio of SRPT is be-
tween 21

19 and 5
4 [Chung et al. (2010), Sitters (2010)]. In this paper, I will

focus on the lower bound of 21
19 and will try to analyze and improve on it.

The ultimate goal is to find an instance with a greater ratio than 21
19 .

The goals for this paper are to find the characteristics of instances where
SPRT gives a greater objective value than an optimal schedule would give
and to show that SRPT is much faster than solving the Integer Linear
Program to find an optimal schedule. In addition, this paper wants to give
a range of instances for which the competitive ratio of SRPT is not greater
than 21

19 and to analyze a general form of instances for which the ratios are
high.

In this paper, I will first introduce the problem and the known literature
about the subject. Second, I will present the methods used for the analysis
required by this paper; I will give the integer linear program I used to find
optimal schedules in this paper and show how the process to generate the
instances worked. Third, I will present the results from the analysis of
some ranges of small instances and the results for large instances. Last,
I will algebraically analyze the general form of some particular high ratio
instances found in the analysis of small instances.

All analysis was done on my laptop, bought in fall 2011. It has an Intel
Core i5 2520M processor, rated at 2,5 GHz and has a turbo function which
increases the frequency to 3,0 GHz under load. The laptop has 4 GB of
DDR3 RAM.

3.2 Literature

3.2.1 Scheduling problems

The field of scheduling problems was introduced in the early fifties. Since
then, there has been a lot of literature on many different kinds of scheduling
problems.

The only thing that all scheduling problems have in common is that
there is a set of n jobs J that have to be processed on m machines. Further
specifications vary greatly. To the end of classifying scheduling problems, a

3.2. LITERATURE 67

notation was introduced by [Graham et al. (1979)]. The notation has three
parts: α|β|γ.

The α in the Graham notation specifies the machine environment used in
the problem. Choices for α include: P signifying identical parallel machines,
Q signifying parallel machines with specific speed factors and R signifying
unrelated parallel machines.

The β in the Graham notation indicates the type of jobs used. This field
can be a combination of multiple specifications. Preemption (job splitting)
and precedence relationships are included in β.

The γ specifies the optimality criterion chosen. Often, the optimality cri-
terion is based on the completion times of jobs or on their lateness regarding
their due date.

3.2.2 Specific scheduling problem

The scheduling problem addressed in this paper is notated in the Graham
notation by P |rj , pmtn|

∑
Cj .

As indicated in 3.2.1, the P signifies parallel identical machines, where
the number of machines is specified in the instance of the problem. The
rj indicates release times for the jobs: each job j becomes known at time
rj and can not be processed before this point in time. The pmtn indicates
that preemption is allowed. This means that jobs can be split up as of-
ten as needed without penalty. Finally,

∑
Cj means that the objective in

this problem is minimizing the average completion time of jobs, which is
equivalent to minimizing the overall sum of completion times.

In short, the class of problems studied is the class of scheduling problems
where there are some number of identical parallel machines which are doing
jobs that have a certain release time and that can be split up at any point.
The objective is to minimize the sum of completion times of the jobs.

[Baptiste et al. (2007)] proved that the P |rj , pmtn|
∑
Cj problem is

unary NP-hard. This means that even if the inputs can be bounded by
a polynomial in the input size, the problem is still NP-hard. Before that,
[Du et al. (1990)] already proved the problem is NP-hard.

3.2.3 Approximation ratio

In Operations Research, often algorithms are studied that may not always
give the optimal solution to a problem. When studying such an algorithm,
it might be of interest how much worse the solution that algorithm gives
can be than the optimal solution. In other words, to compare the worst

68 CHAPTER 3. PREEMPTIVE SCHEDULING

possible solution from the algorithm to the optimal solution. This is called
the performance of an algorithm.

The instrument that is used to measure this performance is the approx-
imation ratio. If OPT is the objective value of the optimal solution and
ALG is the objective value of the worst solution the algorithm can provide,
the approximation ratio is defined as ALG

OPT .

3.2.4 SRPT

The scheduling problem introduced in 3.2.2 can not be solved in polynomial
time, as proven by [Baptiste et al. (2007)]. Thus, solving the problem to
optimality could prove to take a long time. [Philipps et al. (1998)] intro-
duced an algorithm to solve P |rj , pmtn|

∑
Cj which they called SPT, for

Shortest Processing Time. By that time, it was already known that this
algorithm solved the problem for one machine to optimality in polynomial
time. SPT is the same algorithm that we call SRPT now, where the R
stands for Remaining.

SRPT schedules the jobs in such a way that at every time slot the jobs
with the shortest remaining running time are processed. A schedule is called
an SRPT schedule if for every machine at each time slot the jobs with the
lowest possible remaining processing time are selected.

SRPT is a deterministic algorithm. This implies that SRPT gives a
schedule that has for each point in time which jobs the machines have to
process. This also requires an arbitrary method to choose from jobs that
have the same remaining processing times. Any method will work and will
not affect the performance of the algorithm.

SRPT can be seen as an online algorithm. The performance of the
algorithm is not affected by having knowledge of future jobs.

Ideally, the processing time of the SRPT algorithm is O(n log n), where
n is the number of jobs. [Philipps et al. (1998)]

3.2.5 Upper bound

When trying to find the approximation ratio of an algorithm, trying to find an
upper bound is most desirable. If an upper bound is known, there is a guar-
antee that for any instance, the performance of SRPT can be at most the
upper bound times the optimal objective value. In other words, if an upper
bound is known, it is known how ”bad” SRPT can perform at worst. When
SRPT was first studied for this particular problem by [Philipps et al. (1998)],
they proved that SRPT has an approximation ratio of at most 2. The idea
used in that proof is that the SRPT schedule has finished at least the same

3.2. LITERATURE 69

amount of jobs by time 2t that any other schedule could have finished by
time t.

Later, in [Chung et al. (2010)], [Chung et al. (2010)] published a paper
that both included a new lower bound and a new upper bound for the ap-
proximation ratio of SRPT. They proved that SRPT is 1.86-competitive for
this problem. In the article, they call their method probabilistic but note that
although the method is probabilistic, the result is deterministic. The proof
uses an algorithm that transforms an optimal schedule to a SRPT schedule.
They prove this algorithm increases the expectation of the objective value
by at most 1.86.

The most recent result is from [Sitters (2010)], which improves the upper
bound to 5

4 with a proof based on the proof by [Philipps et al. (1998)].

3.2.6 Lower bound

In addition to proving the 1.86 upper bound on the approximation ratio,
[Chung et al. (2010)] also obtained a lower bound. Obtaining a lower bound
is easier, as an instance for which the algorithm performs badly is enough
to prove that the approximation ratio is at least the ratio in the instance.
[Chung et al. (2010)] found an instance for which the ratio is 21

19 . This
improves on the previous best known lower bound, 12

11 . It is also known
that no deterministic online algorithm can have a lower bound less than 22

21
[Vestjens (1997)].

The instance by [Chung et al. (2010)] with a ratio of 21
19 has m = 2 and

n = 7.

j 1 2 3 4 5 6 7
pj 1 1 2 1 1 1 1
rj 1 1 1 3 3 3 3

Table 3.1: The instance with the greatest approximation ratio known

An SRPT schedule for the instance could look like this:

t 1 2 3 4 5
m1 1 3 4 6 3
m2 2 5 7

The objective value for this instance is 21. In this case, doing the short
jobs first creates a hole in the schedule at time slot 2. This becomes ineffi-
cient at time slot 3 because a block of new jobs is released. The completion
of job 3 is postponed until all the new jobs are complete.

70 CHAPTER 3. PREEMPTIVE SCHEDULING

Solving to optimality gives this schedule with an objective value of 19.

t 1 2 3 4 5
m1 1 2 4 6
m2 3 3 5 7

3.3 Methods

To achieve the goals set by this paper, analyzing a lot of instances was
required. To that extent, I built a program that can generate an SRPT
schedule and an optimal schedule for an instance of the problem. In addition,
I created a program that can generate all instances in a specified range for
analysis and then uses the methods of the first program to find the two
schedules for each instance.

3.3.1 Solving to optimality

First, a method to solve an instance of the scheduling problem to optimality
was needed. In this paper, this is done by using CPLEX technology to solve
an integer linear program which corresponds to the instance that needs to
be solved.

Let T be an integer number at least as large as the maximum possible
time needed by a feasible solution. In the implementation of the program,
T =

∑n
j=0 pj +maxj rj is used. Then the integer linear program looks like:

3.3. METHODS 71

Minimize

n∑
j=1

Cj

Subject to ∀j :

T∑
t=1

Bj,t ≥ pj

∀j :

rj−1∑
t=1

Bj,t = 0

∀j : Cj ≥
T∑
t=0

Bj,t

∀t :

n∑
j=1

Bj,t ≤ m

Bounds ∀j, t : Bj,t ∈ {0, 1}
∀j : 0 ≤ Cj ≤ T

Where Bj,t represents a boolean schedule for all jobs and Cj represents
the completion time of job j. As before, n is the number of jobs and m is
the number of machines. t is used to indicate time and j to indicate job
number.

The boolean schedule is visualized below. For each time slot, there is a
column of variables of length n which can take the values 0 and 1. So, if
T = 20 and j = 7, the amount of variables in the schedule is 140.

Time
1 2 3 4 ...

Job

1
2
3
4
...

In this visualization, the solution the linear program will find has a 0 or
1 in every empty cell. The first constraint means that at least pj cells in
row j should be 1. The second constraint means that the first rj − 1 time
slots on a row should have a 0 to accommodate for the release time. The
third constraint defines the completion time of each job as the time of the
last cell that has a 1 for that row. The last constraint means that the sum
over a column should be at most the number of machines.

72 CHAPTER 3. PREEMPTIVE SCHEDULING

3.3.2 Finding an SRPT schedule

To find an SRPT schedule, the following technique was used:
Start at time slot 1. Add all jobs that have release time 1 to a list

of available jobs sorted by their remaining processing time. Then select
the first m jobs from this sorted list. For each selected job, decrease the
remaining processing time by 1. If for any of the selected jobs the remaining
processing time is now 0, remove those jobs from the list of available jobs.

Now go to the next time slot and repeat the same operations. Continue
until all jobs are completed.

The STD library of C++ includes the multimap class which is very well
suited to store the available jobs. It stores pairs of information while keeping
the data sorted by the key variable. For this application, it can keep the
pair of remaining processing time and job number together while sorting the
remaining processing times.

3.3.3 Generating the instances

A big challenge when analyzing the competitiveness of SRPT was generating
all instances for given parameters. Skipping certain instances may lead to
missing some particularly high approximation ratio instances while analyzing
duplicate instances will cost too much time.

An instance of the problem class P |rj , pmtn|
∑
Cj includes a number

of machines and a vector of processing times and a vector of release times
of equal length. The length of the vectors is equal to the number of jobs.
Ideally, the program will only generate unique instances. In this sense, unique
instances are instances that have a different set of jobs regardless of their
order.

The process used to generate all instances uses a different generation
process for the processing times and the release times. The generation
process for the processing times used in this paper is a process that generates
increasing numbers that have the characteristic that each digit is at least
as large as the digit before it. The generation process used for the release
times is just increasing numbers until all jobs have the maximum release
time.

To be certain no instance will be checked twice, a repository is used that
holds all previously tried instances as a long integer number with for each
job the processing time and release time, sorted by the release time. Before
any instance is analyzed by the program, the program first checks if the
long integer of the current instance is already in the repository. If it is, the
instance is skipped because it is a duplicate of an earlier instance. If not,
the program analyzes the instance.

3.3. METHODS 73

3.3.4 The number of machines

Each instance has a list of jobs with for each job a processing time and
release time. These processing and release times will be generated by the
generating process described in 3.3.3. In addition to the jobs, each instance
has a certain number of machines m. In this paper, I chose to set the
number of machines for each instance to 2. The choice for m = 2 stems
from the fact that the worst known instance also has 2 machines.

Preliminary analysis shows that if we set m = 3, many more jobs are
needed to create the same difference between the objective values given by
SRPT and OPT. For example, the most intuitive translation of the instance
given by [Chung et al. (2010)] to 3 machines would create one more job at
release time 1 with a processing time of 1 and two new jobs at release time
3 with a processing time of 1. All three new jobs finish at the same time in
the SRPT schedule and optimal schedule, increasing both objective values
by the same amount. Thus, decreasing the ratio between them.

My belief is that the greatest ratio that can be found for m = 3 is
less than the greatest ratio for m = 2. To get to ratios greater than
1, for m = 3, at least 7 jobs are needed following from the characteristics
presented in 3.4.1, with even more jobs required when m is increased further.
As processing power is limited, analysis on instances with m = 2 will give
better results.

3.3.5 Reducing the amount of instances

Generating all instances with maximum processing time and maximum re-
lease time of 5 using the process described in 3.3.3 produces too many
instances to analyze in reasonable time for n > 4. Therefore, it is desirable
to reduce the amount of instances to check for high competitive ratios.

In search for high competitive ratios, problem instances that have no
jobs with release time 1 can be disregarded. Any problem instance that
has no jobs with release time 1 has only jobs with release times of 2 or
more. By decreasing all release times in the instance by 1, a new, valid
problem instance is created that will have a greater competitive ratio than
the original instance. In this section I will use a function V (·) which gives
the objective value of the schedule of its argument. In this section, OPT (A)
and SRPT (A) denote the schedules solving to optimality and SRPT would
give respectively.

Assume a problem instance A with release times such that rj > 1.
Use the program described in 3.3.1 and 3.3.2 to find an optimal schedule
OPT (A) and an SRPT schedule SRPT (A). The objective values cor-
responding to these schedules are V (OPT (A)) and V (SRPT (A)). The

74 CHAPTER 3. PREEMPTIVE SCHEDULING

competitive ratio for instance A is V (SRPT (A))
V (OPT (A)) ≥ 1.

Now, transform A by decreasing all release times by 1. The original
schedule OPT (A) can be transformed to a feasible schedule for A′ by
shifting all Bj,t to Bi,t−1. As the schedule OPT (A) was optimal for in-
stance A and A′ only changes the release times all by the same amount
and the production times are shifted by the same amount, this schedule
is an optimal schedule for A′. In OPT (A′), every job is completed 1
time slot ealier than in OPT (A), thus V (OPT (A′)) = V (OPT (A)) − n.
For SRPT, a similar argument holds. Schedule SRPT (A) can be trans-
formed by shifting all production times to the front by 1 to obtain an
SPRT schedule for A′. Again, the objective value has a similar relation:
V (SRPT (A′)) = V (SRPT (A))− n. The competitive ratio for A′ is now
V (SRPT (A′))
V (OPT (A′)) = V (SRPT (A))−n

V (OPT (A))−n . As the numerator and denominator are de-

creased by the same amount, the value of the ratio for A′ will be greater.

As V (SRPT (A))
V (OPT (A)) ≥ 1, now V (SRPT (A′))

V (OPT (A′)) ≥
V (SRPT (A))
V (OPT (A)) , where equality only

holds if V (SRPT (A))
V (OPT (A)) = 1. Therefore, if the objective is to find a high ratio,

instance A can be disregarded.
Now, the amount of instances to analyze to find the high competitive

ratio instances is reduced. Table 3.2 shows how many instances are left
for n jobs with a maximum processing time and maximum release time
of 5. The restriction reduces the amount of instances for every amount
for every group of instances with the same amount of jobs. However, the
reduction becomes relatively smaller when n increases. The last column
shows how many instances are left after the restriction is applied to instances
with maximum processing time of 3 and maximum release time of 5. This
restriction is needed to check a range of instances with more than 6 jobs, as
it now becomes reasonable to check all instances in that range for 7 jobs.

Jobs Instances With a release time = 1 Max processing time 3
1 25 5 3
2 325 115 42
3 2925 1383 316
4 20475 11620 1695
5 118755 76251 7260
6 593775 416675 26384
7 2629575 1971775 84456
8 10518300 8298225 649230

Table 3.2: Numbers of instances to check for given parameters

Especially to analyze ranges of even larger instances, a further reduction

3.4. FINDINGS 75

of the amount of instances to check would be helpful. In this paper, no
further reduction of the amount of instances to check is performed. One
additional way to reduce the amount of instances to check is to ignore all
instances with jobs with all the same release time as it is known that those
instances will be solved optimally by SRPT.

3.4 Findings

3.4.1 Small instances

For the ranges of instances specified in 3.3.5, this paper will now present
the results that were obtained.

Table 3.3 sums up the results for small instances. The first column shows
the amount of instances analyzed for that amount of jobs.

Jobs Instances ”Bad” instances Worst ratio Average Ratio
1 5 0 1
2 115 0 1
3 2925 0 1
4 11620 0 1
5 76251 1316 12

11 1,0007
6 26384 886 16

15 1,0014
7 84456 4254 21

19 1,0020

Table 3.3: Results for small intances and m = 2

For 1 till 5 jobs, all instances with release time and processing time per
job at most 5, applying the restrictions form 3.3.5 were considered. For 6
and 7 jobs, the instances all had release times of at most 5 and processing
times per job of at most 3.

3 jobs

For 3 jobs and two machines, when limited to a maximum processing time
per job of 5 and a maximum release time of 5, all instances are solved to
optimality by SRPT.

Solving 2925 instances to optimality took 1315.41 seconds, while finding
the SRPT solutions took 1.006 seconds. The average time per instance to
solve for optimality is 0,45 seconds while the time for SRPT per instance is
under a microsecond.

76 CHAPTER 3. PREEMPTIVE SCHEDULING

4 jobs

For 4 jobs and two machines, when limited to a maximum processing time
per job of 5 and a maximum release time of 5, all instances are solved to
optimality by SRPT.

Solving 11620 instances with 4 jobs to optimality took 1782,17 seconds.
This means that the average time per job to solve to optimality was 0,15
seconds. The time it took for SRPT to find an SRPT schedule for all
instances was 1,778 seconds, again less than a millisecond per job.

5 jobs

For 5 jobs and two machines, when limited to a maximum processing time
per job of 5 and a maximum release time of 5, there are 1316 instances with
a ratio > 1. The average ratio above 1 was about 1,04 while the average
ratio over all instances was about 1,00073; less than 1

1000 . The overall
performance of SRPT on average is close to optimal for these instances
with 5 jobs with the given parameters.

The processing time to solve for optimality for all instances together in
seconds was 32752,7 seconds, which means an average of 0,43 seconds per
instance. The total processing time for all instances together for SRPT was
about 12,526 seconds, less than a millisecond on average.

To visualize the information produced by the program, Figure 3.1 plots
the value of the competitive ratios on the y-axis in the order the program
found the instances.

Interesting to see is that the instance with the greatest competitive
ratio was found as the first instance with a competitive ratio greater than 1.
Overall, this instance was the 45th instance to be checked. In addition, there
was exactly one more instance, number 884, that had the same competitive
ratio, namely 12

11 . The instances are shown in Table 3.4.

j 1 2 3 4 5
pj 1 1 2 1 1
rj 1 1 1 3 3

(a) Instance 1

j 1 2 3 4 5
pj 2 2 4 2 2
rj 1 1 1 5 5

(b) Instance 885

Table 3.4: Instances found for n = 5 with greatest approximation ratio

Instance 1 was actually the instance with the worst known approxi-
mation ratio before [Chung et al. (2010)] and was included in a paper by
[Lu et al. (2003)]. Note that Instance 1 is very similar to the instance from

3.4. FINDINGS 77

200 400 600 800 1000 1200

1.04

1.05

1.06

1.07

1.08

1.09

Figure 3.1: Approximation ratios > 1 for n = 5

[Chung et al. (2010)], only with a reduced block at release time 3. The
SRPT and optimal schedules are shown in Table 3.5.

t 1 2 3 4
m1 1 3 4 3
m2 2 5

(a) SRPT(12)

t 1 2 3 4
m1 1 2 4
m2 3 3 5

(b) Optimal(11)

Table 3.5: Schedules for instance 1

Essentially, instance 885 is the same instance as instance 1 with every-
thing doubled. The processing times are all doubled and the release times
are doubled as well. Release time 1 means the job becomes available in time
slot 1, which starts at time 0. So, job 4 and 5 become available at time 2
in instance 1 and at time 4 in instance 885.

It seems useful to have a definition of a multiple of an instance.

Definition 3. An instance A′ is the c-multiple of instance A if:

1. mA′ = mA

2. nA′ = nA

3. ∀j ∈ A′ : pj,A′ = cpj,A

4. ∀j ∈ A′ : rj,A′ = c(rj,A − 1) + 1

78 CHAPTER 3. PREEMPTIVE SCHEDULING

Where c ∈ N.

All multiples of instance 1, including instance 885, have an approximation
ratio of 12

11 .

Characteristics of instances with ratio greater than 1

For an SRPT schedule to be worse than an optimal schedule, it is required
that for some time slot, say t̃, there are jobs of different lengths available
and that OPT does not select the m shortest jobs to be processed at that
time. For it not to be optimal to select the m shortest jobs first at time
t̃, jobs have to be released at time t̃+ x, such that the longer job selected
by OPT is completed before t̃ + x, but before that job is completed in an
SPRT schedule. For further analysis is if these observations can reduce the
amounts of instances to check even further than the reductions of 3.3.5.

These characteristics do not imply that an instance has to contain jobs
with different processing times to get a ratio strictly greater than 1. For
example, the instance in Table 3.6 also has a ratio greater than 1.

j 1 2 3 4 5
pj 3 3 3 3 3
rj 1 1 3 5 5

Table 3.6: Instance found with ratio > 1 for n = 5 with all processing times
equal

6 jobs

As it is not feasible to check for all instances with release times and process-
ing times up to 5, I chose to generate all instances with 6 jobs with processing
times up to 3. For these 26384 instances, it took 6265,32 seconds to solve
to optimality. This means an average of 0,24 seconds per instance. The
total time to find all SRPT schedules was 3,071 seconds. One of the worst
instances found again is the first instance with a ratio greater than 1. The
approximation ratios greater than 1 are plotted in Figure 3.2.

The greatest approximation ratio is 16
15 . I expect that is the range of

instances is increased, a similar pattern will show, with more instances with
an approximation ratio of 16

15 at multiples of instance 1 and 2.
Interesting to see is that these instances 1 and 2 for n = 6 are similar to

instance 1 from the analysis for n = 5. The difference is the extra job that
was added at release time 3. Both instances produce the same optimal and
SRPT schedules, with the same approximation ratio.

3.4. FINDINGS 79

200 400 600 800

1.04

1.05

1.06

Figure 3.2: First 153 approximation ratios > 1 for n = 6

j 1 2 3 4 5 6
pj 1 1 2 1 1 1
rj 1 1 1 3 3 3

(a) Instance 1

j 1 2 3 4 5 6
pj 1 1 2 1 1 1
rj 1 1 1 3 3 4

(b) Instance 2

Table 3.7: Instance found for n = 6 with greatest approximation ratio

7 jobs

To check instances of 7 jobs is interesting as the greatest known approxima-
tion ratio, 21

19 comes from an instance with 7 jobs. For 7 jobs, I decided to
do the analysis for a maximum processing time per job of 3. This decreases
the amount of instances to analyze from 1971775 to 84456. In total, 4254
instances were found with a ratio more than 1. The total running time to
find the optimal schedules was 41361,8 seconds, an average of 0,49 seconds
per instance. The time to find the SRPT schedules was 7,162 seconds,
meaning an average less than a millisecond per instance.

Again, I plot the approximation ratios in the order they were found to
visualize them in Figure 3.3.

The worst ratio found is the 21
19 from the [Chung et al. (2010)] instance,

which was found as instance 7, and two variations of it. The variations are
shown in Table 3.8.

80 CHAPTER 3. PREEMPTIVE SCHEDULING

0 1000 2000 3000 4000

1.04

1.06

1.08

1.10

Figure 3.3: Approximation ratios found > 1 for n = 7

j 1 2 3 4 5 6 7
pj 1 1 2 1 1 1 1
rj 1 1 1 3 3 3 4

(a) Instance 8

j 1 2 3 4 5 6 7
pj 1 1 2 1 1 1 1
rj 1 1 1 3 3 4 4

(b) Instance 10

Table 3.8: Instances found for n = 7 with greatest approximation ratio other
than the Chung instance

3.4.2 Large instances

In addition to analyzing certain ranges of small instances, this paper wants
to show how SRPT performs in comparison to solving to optimality for larger
instances. The first approach was to generate 100 random instances with
100 jobs. The parameters were a maximum processing time per job of 5
and a maximum release time of 10. The instances had 5 machines. To
generate SRPT schedules for these instances is no problem and only takes
0,001 or 0,002 seconds per instance. To find an optimal schedule using
the linear program described in 3.3.1 generates a branch and bound tree of
many gigabytes, giving a memory error within 10 minutes of starting the
CPLEX algorithm.

To alleviate the high memory use, I first reduced the time horizon of the
linear program, T . The original time horizon gives CPLEX a lot of decision
variables that are not necessarily needed. The number of machines reduces

3.5. TRYING TO FIND A WORSE INSTANCE 81

time horizon needed. I chose to take T as the time needed by the SRPT
schedule plus the maximum processing time. This time T should be enough
as for all small instances analyzed, the time needed by the optimal schedule
was less or equal to the amount of time needed by the SRPT schedule.
In addition, I set the parameter ”MemoryEmphasis” of CPLEX to 1. This
enables the CPLEX solver to use hard disk space to store parts of the branch
and bound tree instead of only being able to use the RAM.

Even with this adaption, trying to solve an instance with 100 jobs is
too ambitious with the hardware I have available. After some trial and
error, I settled for an instance with 25 jobs, maximum processing time of
4, maximum release time of 9 and 4 machines. Finding an SRPT schedule
took 0,007 seconds while the linear program took 36175,1 seconds, over 10
hours. Both schedules found have an objective value of 209, meaning SRPT
gave an optimal schedule in this case.

As solving to optimality takes so long, I only did the analysis for one
instance but the difference in time needed should be evident. For larger
instances, solving to optimality will take even longer while finding an SRPT
schedule should still prove very easy.

3.5 Trying to find a worse instance

The worst instances found for 5, 6 and 7 jobs all have the same form. In
each of these worst instances, there are three jobs released at time 1, with
one longer than the other two. Then at a later time, which is the first time
where the first three jobs can all be completed, more jobs are released that
are all of the same length as the remaining processing time at that time
of the longest job in an SRPT schedule. For the simplest instances in this
class, these jobs are released in time slot 3 and have a length of 1. The
general form is given in Table 3.9. As b is the double of a number of jobs,
it must be a positive real number.

j 1 2 3 4 . . . 3 + 2b
pj 1 1 2 1 . . . 1
rj 1 1 1 3 . . . 3

Table 3.9: General form of worst instances of 5 and 7 jobs (b ∈ N)

Now, it would be interesting to see what the maximum ratio is that can
be achieved with instances like those in Table 3.9. Perhaps a slight change
to a large multiple of one of the instances will give a greater ratio than 21

19 .
To allow for these variations, consider the instances in Table 3.10.

82 CHAPTER 3. PREEMPTIVE SCHEDULING

j 1 2 3 4 . . . 3 + 2b
pj p1 p2 p3 p4 . . . p4

rj 1 1 1 r4 . . . r4

Table 3.10: Modified form of multiples of 3.1 and 3.4(a) (b ∈ N)

The form of the SRPT and optimal schedules for these worst instances
all have the same form. In the SRPT schedule, the two shorter jobs are
started at time slot 1. After one of these jobs is finished, the longer job is
started. Before the longer job is finished, the other jobs are released such
that the completion of job 3 is delayed until the end of the schedule. In the
optimal schedule, jobs 1, 2 and 3 are done before the jobs are released. The
form is displayed generally in Figure 3.4. Here, it is assumed without loss
of generality that p1 ≤ p2.

(a) SRPT

(b) optimal

Figure 3.4: General SRPT and optimal schedules for instances of Table 3.10

From the schedules in Figure 3.4 and the general form in Table 3.10, we
can deduce that:

1. In the SRPT schedule, for the last part of job 3 to be processed last,
p4 ≤ p3 − (r4 − p1 − 1) needs to hold. Otherwise SRPT rules dictate
that job 3 must be processed before the other jobs. We can say
p4 = p3 − (r4 − p1 − 1)− c for some c ≥ 0.

2. From the optimal schedule, as the block can only start after all first
3 jobs are finished, r4 > p1 + p2 and r4 > p3.

3.5. TRYING TO FIND A WORSE INSTANCE 83

3. p3 ≥ p2 ≥ p1, otherwise job 3 would have to be selected before job 1
or 2 in the SRPT schedule.

Now, we want to find the maximum ratio that can be achieved with an
instance of the form specified in Table 3.10. First, I will specify the objective
values achieved by both schedules.

SRPT = p1 + p2 + 2
b∑
i=1

(r4 + ip4 − 1) + r4 + bp4 − 1 + p3 − (r4 − p1 − 1)

(3.1)

OPT = p1 + (p1 + p2) + p3 + 2

b∑
i=1

(r4 + ip4 − 1) (3.2)

In both expressions, the sum can be simplified by:

2

b∑
i=1

(r4 + ip4 − 1) = 2br4 − 2b+ 2p4

b∑
i=1

i

= 2br4 − 2b+ p4(b2 + b)

Substituting this in both expressions and simplification of these expres-
sions lead to:

SRPT = p1 + p2 + 2br4 − 2b+ p4(b2 + b) + r4 + bp4 − 1 + p3 − (r4 − p1 − 1)

= 2p1 + p2 + p3 + (b2 + 2b)p4 + 2br4 − 2b

OPT = p1 + (p1 + p2) + p3 + 2br4 − 2b+ p4(b2 + b)

= 2p1 + p2 + p3 + (b2 + b)p4 + 2br4 − 2b

The ratio is:

SRPT

OPT
=

2p1 + p2 + p3 + (b2 + 2b)p4 + 2br4 − 2b

2p1 + p2 + p3 + (b2 + b)p4 + 2br4 − 2b

= 1 +
bp4

2p1 + p2 + p3 + (b2 + b)p4 + 2br4 − 2b
(3.3)

The goal is to maximize expression 3.3. As p2 is only in the denominator
with positive coefficient, expression 3.3 decreases as p2 increases. As the

84 CHAPTER 3. PREEMPTIVE SCHEDULING

goal is to maximize the expression and the minimum value of p2 is p1, the
first conclusion is that p2 = p1 in the maximum ratio instance of this form.

SRPT

OPT
= 1 +

bp4

3p1 + p3 + (b2 + b)p4 + 2br4 − 2b
(3.4)

We said that p4 = p3 − (r4 − p1 − 1) − c for some c ≥ 0. Expression
3.4 becomes:

SRPT

OPT
= 1 +

b(p3 − (r4 − p1 − 1)− c)
3p1 + p3 + (b2 + b)(p3 − (r4 − p1 − 1)− c) + 2br4 − 2b

= 1 +
bp1 + bp3 − br4 − bc+ b

(b2 + b+ 3)p1 + (b2 + b+ 1)p3 + (−b2 + b)r4 + (−b2 − b)c+ b2 − b
(3.5)

Taking the partial derivative with respect to c gives:

∂

∂c

[
1 +

bp1 + bp3 − br4 − bc+ b

(b2 + b+ 3)p1 + (b2 + b+ 1)p3 + (−b2 + b)r4 + (−b2 − b)c+ b2 − b

]
=

(−1) · (2b2(r4 − 1) + 3p1 + p3)

((b2 + b+ 3)p1 + (b2 + b+ 1)p3 + (−b2 + b)r4 + (−b2 − b)c+ b2 − b)2

As r4 will always have a value of more than 1 following from r4 > 2p1,
the expression is negative for all values of the parameters. This means, to
maximize expression 3.5, we need to set c to its minimum, c = 0. This
makes p4 = p3 − r4 + p1 + 1.

SRPT

OPT
= 1 +

bp1 + bp3 − br4 + b

(b2 + b+ 3)p1 + (b2 + b+ 1)p3 + (−b2 + b)r4 + b2 − b
(3.6)

Taking the partial derivative with respect to r4 gives:

∂

∂r4

[
1 +

bp1 + bp3 − br4 + b

(b2 + b+ 3)p1 + (b2 + b+ 1)p3 + (−b2 + b)r4 + b2 − b

]
= − (2b2 + 3b)p1 + (2b+ 1)p3

((b2 + b+ 3)p1 + (b2 + b+ 1)p3 + (−b2 + b)r4 + b2 − b)2

This partial derivative is always negative as p1 and p3 are always strictly
positive. To maximize the ratio, we can set r4 to its minimum value. As

3.5. TRYING TO FIND A WORSE INSTANCE 85

r4 > p1 + p2 and r4 > p3, we know the minimum value of r4 = max{p1 +
p2 + 1, p3 + 1} = max{2p1, p3}+ 1.

To further analyze the ratio of the general form, we now distinguish 2
cases. Case 1 where 2p1 ≥ p3 and Case 2 where p3 ≥ 2p1

Let us consider Case 1 where 2p1 ≥ p3. Now, r4 = 2p1 + 1. The ratio
becomes

SRPT

OPT
= 1 +

−bp1 + bp3

(−b2 + 3b+ 3)p1 + (b2 + b+ 1)p3
(3.7)

If we now take the partial derivative with respect to p1, we get:

∂

∂p1

[
1 +

−bp1 + bp3

(−b2 + 3b+ 3)p1 + (b2 + b+ 1)p3

]
= − (4b2 + 4b)p3

((−b2 + 3b+ 3)p1 + (b2 + b+ 1)p3)2

This partial derivative is again always negative as p3 > 0, which means
to maximize expression 3.7, we need to set p1 to its minimum. We get
2p1 = p3. Substituting 2p1 for p3 in expression 3.7 gives:

SRPT

OPT
= 1 +

bp1

(b2 + 5b+ 5)p1

= 1 +
b

b2 + 5b+ 5

Now, let us consider Case 2 where p3 ≥ 2p1. Now, r4 = p3 + 1.
Expression 3.6 becomes:

SRPT

OPT
= 1 +

bp1

(b2 + b+ 3)p1 + (2b+ 1)p3
(3.8)

In this expression, p3 is only in the denominator and has a positive
coefficient. To maximize the expression, we have to set p3 to its minimum,
which is 2p1 by the case distinction. Substituting 2p1 for p3 in expression
3.8 gives:

SRPT

OPT
= 1 +

bp1

(b2 + 5b+ 5)p1

86 CHAPTER 3. PREEMPTIVE SCHEDULING

= 1 +
b

b2 + 5b+ 5

So, from both cases we get the same ratio of 1 + b
b2+5b+5 . The conclu-

sions from this maximization so far are that to maximize expression 3.3, the
following must be true:

1. p1 = p2

2. p3 = 2p1

3. r4 = p3 + 1 = 2p1 + 1

4. p4 = p3 − r4 + p1 + 1 = p1

What is left is to find the maximum over b of the expression 1+ b
b2+5b+5 .

I plot the values of the ratio for values of b from 1 to 50 in Figure 3.5.

10 20 30 40 50

1.02

1.04

1.06

1.08

1.10

Figure 3.5: 1 + b
b2+5b+5 plotted for positive integer b ≤ 50

The maximum is at b = 2, which gives a ratio of 21
19 . If we let b = 2 and

combine with the other conclusions so far, we end up in a multiple of the
[Chung et al. (2010)] instance.

3.6 Conclusions

The analysis showed that all instances with two machines and at most 5 jobs
with maximum processing time of 5 and maximum release time of 5 have a

3.6. CONCLUSIONS 87

lower ratio than 21
19 between SRPT and optimal. In addition, all instances

with two machines and at most 7 jobs with maximum release time of 5 and
maximum processing time of 3 have ratios not more than 21

19 .
Overall, the analysis for small instances showed that on average, SRPT

will give an objective value very close to the optimal objective value.
Solving large instances to optimality with the described integer linear

program is not feasible on personal computers as even an instance with only
25 jobs took over 10 hours.

The analysis of the general form of the worst instances found showed
that this specific form of instances has a maximum ratio of 21

19 . For a greater
ratio, a completely different type of instance is needed.

As no instance with a ratio greater than 21
19 has been found and it is

not certain whether this is the greatest ratio possible, the bounds on the
approximation ratio of 21

19 and 5
4 still stand.

88 CHAPTER 3. PREEMPTIVE SCHEDULING

Bibliography

[Baptiste et al. (2007)] Philippe Baptiste, Peter Brucker, Marek Chrobak,
Christoph Drr, Svetlana Kravchenko, and Francis Sourd. The complexity
of mean flow time scheduling problems with release times. Journal of
Scheduling, 10:139–146, 2007.

[Chung et al. (2010)] Christine Chung, Tim Nonner, and Alexander Souza.
Srpt is 1.86-competitive for completion time scheduling. In Proceed-
ings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’10, pages 1373–1388, Philadelphia, PA, USA, 2010.
Society for Industrial and Applied Mathematics.

[Du et al. (1990)] Jianzhong Du, Joseph Y.-T. Leung, and Gilbert H.
Young. Minimizing mean flow time with release time constraint. Theo-
retical Computer Science, 75(3):347 – 355, 1990.

[Graham et al. (1979)] R.L. Graham, E.L. Lawler, J.K. Lenstra, and
A.H.G.Rinnooy Kan. Optimization and approximation in determinis-
tic sequencing and scheduling: a survey. In E.L. Johnson P.L. Hammer
and B.H. Korte, editors, Discrete Optimization II Proceedings of the
Advanced Research Institute on Discrete Optimization and Systems Ap-
plications of the Systems Science Panel of NATO and of the Discrete
Optimization Symposium co-sponsored by IBM Canada and SIAM Banff,
Aha. and Vancouver, volume 5 of Annals of Discrete Mathematics, pages
287 – 326. Elsevier, 1979.

[Lu et al. (2003)] X. Lu, R.A. Sitters, and L. Stougie. A class of on-line
scheduling algorithms to minimize total completion time. Operations
Research Letters, 31(3):232 – 236, 2003.

[Philipps et al. (1998)] Cynthia Phillips, Clifford Stein, and Joel Wein. Min-
imizing average completion time in the presence of release dates. Math-
ematical Programming, 82:199–223, 1998.

89

90 BIBLIOGRAPHY

[Sitters (2010)] René Sitters. Efficient algorithms for average completion
time scheduling. In Friedrich Eisenbrand and F. Shepherd, editors, In-
teger Programming and Combinatorial Optimization, volume 6080 of
Lecture Notes in Computer Science, pages 411–423. Springer Berlin /
Heidelberg, 2010.

[Vestjens (1997)] A.P.A. Vestjens. On-line Machine Scheduling. PhD thesis,
Technische Universiteit Eindhoven, 1997.

