
Summary

When looking at prices in the stock market, it becomes clear that these
prices are rather volatile. This means that prices vary over the day. Esti-
mating the degree of variation through the day is of great importance to
practitioners in the financial markets, and has therefore become a popu-
lar topic in financial econometric literature. The more prices are observed
throughout the day the more accurately one can estimate the daily volatility.
However, as is the problem with any estimation, we cannot say with 100%
certainty that the estimated value is equal to the true value. What we can
do is construct a confidence interval around our estimate. A confidence
interval states that the true value lies within a specified range with a certain
probability. In order to do this we need two things: we need to know the
variance of our estimator and we need to know its distribution. Although
the first issue can be dealt with, the second issue proves itself to be difficult.

The first approach is to derive an asymptotic distribution. In deriving
this distribution, one makes the assumption that the number of returns ob-
served within a day is infinite. By making this assumption, it can be shown
that the difference between the true value and the estimated value converges
to the normal distribution. This is a nice result as it is easy to interpret and
work with this distribution. A property of this distribution is that it is sym-
metric around its mean. In reality we do not observe an infinite amount of
returns within a day. When we observe only a finite number of returns, we
make an error in assuming the difference between the true value and the
estimator is normally distributed. In case of a finite number of observations
the true distribution is asymmetric as opposed to a symmetric one like the
normal distribution.

To deal with this issue the idea of applying the bootstrap technique was
introduced. When performing a bootstrap, one takes the original sample
on which the original estimator is based, and create a new sample (the
bootstrap sample). Using the bootstrapped sample we can re-estimate the
statistic of interest (bootstrapped estimate). There are many ways to con-
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struct the bootstrap sample. The i.i.d. bootstrap and the wild bootstrap
are considered in my bachelor thesis. With the i.i.d. bootstrap the new
sample is created by randomly picking observations from the original sam-
ple, allowing for the same observation to be picked multiple times. The
wild bootstrap constructs a new sample by multiplying the observations of
the original sample by a random variables. Different bootstrapping methods
have different properties and it is therefore interesting to consider more than
just one.

Analogously to the difference between the true value and the estimator,
it can be shown that the difference between the original estimate and the
bootstrapped one also converges to a normal distribution when the number
of observations goes to infinity. Again, this only holds in case the number of
observations is infinite. The nice thing about the bootstrap, however, is that
it is created by the investigator and can be done as many times as desired.
This means that even in the finite case, although analytically unknown, the
distribution of the difference between the bootstrapped estimate and the
original estimate can be generated by the investigator.

This is not possible for the difference between the original estimator and
the true value, as there is only one sample is observed in reality. As men-
tioned before when we assume a normal distribution when constructing a
confidence interval for the difference between the estimator and the true
value we make an error. If rather than assuming a normal distribution, we
assume it has the same distribution as the difference between the boot-
strapped estimate and the original one, under the right conditions the error
made becomes smaller. If this is the case we can improve our confidence
interval by making use of the bootstrap method.

The whole story above is very much dependent on the assumptions made
on the model that the stock prices follow. The goal of my bachelor thesis
was to investigate the effect of assuming an intra-day periodicity factor in
the volatility of the stock price on the ability of the bootstrap methods to
provide better confidence intervals.
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4.1 Introduction

The availability of intra-day return data has given rise to statistics such
as Realized Volatility (RV). Instead of measuring the daily volatility by the
difference in opening an closing prices, the true volatility path could be in-
vestigated in more detail. Under certain conditions RV has been shown to
be a consistent estimator of the Integrated Volatility (IV), a quantity of
great importance to modelling daily returns using GARCH-like models. In
order to draw inference on this quantity, a normal asymptotic theory for RV
was derived by Barndorff-Nielsen and Shephard (2002). In small samples
the true distribution of the standardized RV is quite skewed, which leads
to an under-coverage of the true IV by confidence intervals based on nor-
mal asymptotic theory. Goncalves and Meddahi (2009) therefore proposed
the bootstrapping method. Using Edgeworth expansions and Monte Carlo
simulations they showed that the bootstrap error in estimating the true dis-
tribution of the standardized RV is smaller than the error of the normal
asymptotic approximation. In this paper, we want to look at the effect
of including an intra-day periodicity factor in the volatility term. We find
the bootstrapping methods to provide better confidence intervals than the
normal asymptotic theory, also when a periodicity component is included in
the underlying price model. Estimating the periodicity component first, and
filtering it out of the returns, leads to an improvement in our results. In
section 2 the relevant literature is reviewed. In section 3 the simulation pro-
cess and the construction of confidence intervals are described. In section
4 we will discuss the results of the Monte Carlo simulation, and in the last
section a conclusion is given.

4.2 Literature Review

4.2.1 Underlying Model and Realized Volatility

In most literature related to volatility estimation the following continuous
time model is assumed for the log price:

d logSt = µtdt+ υtdWt (4.1)

Here logSt denotes the log of the price level, µt is a deterministic trend
component, and υt is a time-varying stochastic volatility process. Wt de-
notes a standard Wiener process. At high data frequencies the drift term
becomes negligible, as its order of dt is much smaller than the order of the
volatility term. This term will be excluded such that the focus goes to the
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effect of the extension to this model we want to investigate later on. With
the exclusion of the drift term equation (1) is simplified to:

d logSt = υtdWt (4.2)

Lets assume returns are observed over equal spaced time intervals of size
∆. The ith return observed is then equal to:

ri ≡ logSi − logSi−∆ =
i∫

i−∆

υudWu

In case of a time-invariant volatility factor, υt = υ,∀ t ≥ 0, this return can
be rewritten as:

ri =
i∫

i−∆

υdWu = υ(Wi −Wi−∆) ∼ N(0,∆υ2)

When the volatility process is time varying, conditional on the volatility
path, the returns over ∆ are heteroskedastic and can be expressed as ri ∼

i.i.d.N(0, σ2
i ), where σ2

i =
i∫

i−∆

υ2
u du for i = 1, ..., 1/∆.

The quantity of interest in this paper is the daily volatility. As the volatility
component in the underlying model can be time-variant we need to know the
path of this volatility component throughout the day if we want to estimate
the true volatility. This quantity is referred to as the Integrated Volatility:

IV =

1∫
0

υ2
udu (4.3)

As υt is not observed and therefore IV can not directly be computed, we
need to find a consistent estimator. One could simply take the difference
between the first and the last observed price level. However, this would be
a naive estimation as it would completely disregard the volatility dynamics
during the day. Andersen, Bollerslev, Diebold and Labys and Barndorff-
Nielsen and Shephard (2002, 2001) have shown that Realized Volatility is a
consistent and efficient estimator of IV:

RV =

1/∆∑
i=1

r2
i (4.4)

E(RV ) =
1/∆∑
i=1

E(r2
i ) =

1/∆∑
i=1

E(σ2
i u

2
i ) =

1/∆∑
i=1

i∫
i−∆

υ2
udu = IV
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4.2.2 Intra-day Periodicity

An extension to the basic model we would like to investigate is the in-
clusion of an intra-day periodicity factor. Andersen and Bollerslev (1997)
investigated intra-day return behaviour of both exchange rate and price
levels. They used 5-minute-interval data over 1 year for the Deutschemark-
U.S.Dollar exchange rate and 5-minute-interval returns for Standard and
Poor’s composite index futures contract over a period of three years. They
looked at the means of the returns during each of the intervals, as well as
their respective variances. Although there appeared to be no systematic
appreciation or depreciation pattern in the returns, the return volatility did
seem to exhibit a pattern. Taking the absolute value of the returns the
pattern became more clear. The ACF of the absolute returns also confirmed
the suspicion of a periodicity in the returns. These patterns were different
for the exchange rate and the futures contract data.

Although in the study of Andersen and Bollerslev, the periodicity did not
seem to differ much on the different days of the week. For some data slight
differences have been found in the pattern. For the future contracts the data
was taken from one specific organized market which trades during specific
opening and closing times. This is not the same for the exchange rates, they
are traded during the whole 24 hour period of the day. The future contract
absolute returns exhibited a U- shaped to a J- shaped function. Implying
that volatility reaches its highest after opening and before closing, and its
lowest during the lunch period of the day. For the exchange rates, volatility
has been found to be highly correlated with trading volumes. This results
into a sinusoid-like function with its peaks depending on the opening and
closing times of the major financial markets across the world. Andersen and
Bollerslev proposed to implement the periodicity into the basic model by
redefining the volatility term:

σi = sifi

For identification purposes the following normalization is assumed on the
periodicity factor:

∆
1/∆∑
i=1

f2
i = 1

Two different approaches will be looked at when constructing confidence
intervals for IV. In the first approach the normal returns are taken to com-
pute the relevant statistics. In the second approach the periodicity factor
is estimated and filtered out of the returns. The filtered returns are then
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used to compute the relevant statistics. Therefore in the first approach the
periodicity is dealt with in an indirect way by relying on the bootstrapping
method to capture its effect on the distribution of the standardized RV.
The second approach is a more direct approach as the periodicity has been
mostly filtered out before the bootstrapping method has been applied. The
way fi is simulated for the underlying process is discussed in section 3. The
estimation techniques will be described here.

The intra-day periodicity component can be estimated both in a para-
metric and a non-parametric way. The method applied in our Monte Carlo
simulations is a simple non-parametric estimation. The reasoning behind the
method is that during a specific local window, most of the volatility in the
returns can be accounted for by the periodicity. If we define r̄i = ri/ŝi,where
ŝi is an estimate of si, then r̄i ∼ N(0,fi). Andersen and Bollerslev assume
that in the local window st = s∀ t ≥ 0 and estimate ŝ =

√
∆RV . If one has

several days of data with a common periodicity, one can use the standard
deviation of r̄i for each i to compute fi:

f̂i = SDi√
∆

1/∆∑
i=1

SD2
i

where SDi =

√
1
n

n∑
j=1

¯r2
i,j and n denotes the number of days observed.

This estimator is very similar to the one used by Taylor and Xu (1997) If

the data allows it, f̂i could be computed for each day of the week sepa-
rately. In the presence of jumps, using the standard deviation this estimator
becomes inconsistent. Boudt, Croix, and Laurent (2008) propose the use of
the Median Absolute Deviation (MAD) instead of the standard deviation.
As the normal asymptotic theory presented later does not hold in presence
of jumps, we do not consider this scenario. Although st is assumed to be
constant in this estimation, it provides a decent estimation even in case of
time varying volatility.

An alternative approach is the parametric one. Here we once again rely
on the assumption made by Andersen and Bollerslev (1998b) that ri/ŝ ≈
fiui with ui ∼ N(0,1). Under this assumption log( |ri|ŝ ) ≈ log(fi)+log(|ui|),
which allows fi to be isolated as follows:

log( |ri|ŝ )− c = log(fi) + εi

where c equals the expected value of the log of the absolute value of a stan-
dard normal variable and epsiloni is i.i.d. distributed with mean 0 and has
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the density function of the centred absolute value of the log of a standard
normal variable. log fi can then be linearly estimated by x

′

iθ where xi is a
vector of variables such as sinusoids and polynomial transformations of the
time of the day, and θ the respective estimated coefficients. The OLS and
ML estimates are not robust to the presence of jumps, which led to the pro-
posal of the Truncated Maximum Likelihood estimator by Boudt, Croix, and
Laurent (2008), which gives zero weight to observations suspicious of being
affected by jumps. Boudt, Croix, and Laurent have shown that the para-
metric estimators outperform the non-parametric ones. For investigating
the difference between the approaches of filtering and not filtering out the
returns when constructing confidence intervals, the simple non-parametric
estimator will suffice.

4.2.3 Normal Asymptotic Theory and the Bootstrapping
Methods

Our goal is to check the ability of the bootstrapping methods to refine
confidence intervals based on normal asymptotic theory in the presence of
intra-day periodicity. The CLT is based on results of Jacod (1994), Jacod
and Protter (1998) and Barndorff-Nielsen and Shephard (BN-S)(2002)):

S∆ =
RV − IV√

∆V
→d N(0, 1) (4.5)

where

V = 2
1∫
0

υ4
udu

Here S∆ is the standardized value of RV, which, as ∆ → 0, converges in
distribution to a standard normal variable. S∆ can not be computed in
practice as V is unknown. BN-S show that if V is replaced by the consistent
estimator V̂ the CLT still holds:

T∆ =
RV − IV√

∆V̂
→d N(0, 1) (4.6)

where

V̂ = 2
3

1/∆∑
i=1

r4
i
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As the name gives away, the normal asymptotic theory works nicely for
constructing confidence intervals in an asymptotic scenario, but in small
samples the distribution of T∆ is not standard normal. Its left-side tail is
much fatter than the right-side, and its mean is slightly negative rather
than 0. Using the CLT means assuming a mean of 0, and symmetry; two
conditions that are both violated. Goncalves and Meddahi (2009) therefore
propose the use of the bootstrapping method. They show using Edgeworth
Expansions and Monte Carlo simulations that the bootstrap error in esti-
mating the distribution of T∆ is smaller than the error in assuming the
distribution of T∆ to be standard normal.

Goncalves and Meddahi considered two types of bootstrapping methods:
the i.i.d. bootstrap and the wild bootstrap. In the i.i.d. bootstrap returns
are re-sampled with replacement. This method will work best when returns
are i.i.d. distributed, which is the case if the volatility factor is constant
over time. Even when volatility is time-varying and returns are not i.i.d.
distributed any more, Goncalves and Meddahi show that this bootstrap
still provides a refinement over the standard normal approximation. The
bootstrapped returns denoted by r∗i = rIi with Ii ∼ i.i.d. uniform on
{1, 2, ...., 1/∆}. The bootstrap analogue of RV is equal to:

RV ∗ =

1/∆∑
i=1

r∗2i (4.7)

Goncalves and Meddahi construct a standardization RV ∗ using the RV
of the original data:

T ∗∆ =
RV ∗ −RV√

∆V̂ ∗
(4.8)

Although the true variance is known in this case - V ∗ = R4 − RV 2 - an
estimator based on the bootstrapped data is used: V̂ ∗ = R∗4 − RV ∗2.
This is because we are trying to approximate the distribution of T∆, rather
than to perform the best inference possible on RV. Under certain conditions
Goncalves and Meddahi show that as ∆→ 0:

sup
x∈R
|P ∗(T ∗∆ ≤ x)− Φ(x)| →P 0 (4.9)

Combining equations (6) and (9) we get that P ∗(T ∗∆ ≤ x)−P (T∆ ≤ x) =
oP (1), which is a first order validation for the use of the bootstrapping
method.
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The second bootstrapping method considered is the wild bootstrap. The
returns of the original sample are multiplied by an i.i.d random variable: r∗i =
riηi and ηi is chosen externally. Let µ∗q = E∗(|ηi|q)) and the bootstrapped

RV be defined as RV ∗ =
1/∆∑
i=1

r∗i . Then the statistics for the wild bootstrap

are:

T ∗∆ =
RV ∗ − µ∗2RV√

∆V̂ ∗
(4.10)

where

V̂ ∗ =
µ4−µ2

2

µ4
R∗4

here V̂ ∗ again is a consistent estimator of the true conditional variance.
Equation (9) also holds for the wild bootstrap, and therefore combined with
equation (6) gives a first order asymptotic validity for the use of this boot-
strap. This result does not depend on the choice of ηi as long as R∗ is
carefully standardized. The distribution of ηi does, however, affect the abil-
ity to provide second order refinements.

4.2.4 Edgeworth Expansions

Goncalves and Meddahi take two different approaches in investigating the
refinement ability of the bootstrapping method. One method is using Monte
Carlo simulations. This is the approach we take here as well, and is described
in sections 3 and 4. However, the theoretical justification for the use of the
bootstrap method is provided by Goncalves and Meddahi using Edgeworth
Expansions. They consider the formal one-term expansions which are defined
as follows for the normal asymptotic approximation:

P (T∆ ≤ x) = Φ(x) +
√

∆q1(x)φ(x) +O(∆) (4.11)

uniformly in x ∈ R, and where Φ(x) denotes the cdf of a standard normal
variable and φ(x) its density function. q1 is a function of x whose coefficients
depends on the cumulants of T∆:

q1(x) = −(κ1 +
1

6
κ3(x2 − 1)) (4.12)

where κ1 and κ3 are the leading terms of the first and third order cumu-
lants of T∆. The formal first term Edgeworth expansion for the bootstrap
distribution, Th, is of the same form:
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P ∗(T ∗∆ ≤ x) = Φ(x) +
√

∆q∗1(x)φ(x) +O(∆) (4.13)

where

q∗1(x) = −(κ∗1 +
1

6
κ∗3(x2 − 1)) (4.14)

Goncalves and Meddahi show that, conditional on υ, as ∆→ 0:

• q1(x) = 4(2x2+1)

6
√

2
σ̄6

σ̄43/2

• qi.i.d.1 = 1
6 (2x2 + 1)R6−3R4RV+2RV 3

(R4−RV 2)3/2

• qwild1 = −(−A
∗
1

2 + 1
2 (B∗1 − 3A∗1)(x2 − 1)) R6

R
3/2
4

,

where A∗1 =
µ∗6−µ

∗
2µ
∗
4

µ∗4(µ∗4−µ2∗
2 )1/2 and B∗1 =

µ∗6−3µ∗2µ
∗
4+2µ∗32

(µ∗4−µ∗22 )3/2

Here σ̄q =
1∫
0

υqudu.

Using equation (11) we can define the error made by the normal asymp-
totic approach as:

P (T∆ ≤ x)− Φ(x) =
√

∆q1(x)φ(x) +O(∆) (4.15)

uniformly in x ∈ R. In a similar way the error made in approximating the
distribution of T∆ using the bootstrap can be defined as:

P ∗(T ∗∆ ≤ x)− P (T∆ ≤ x) =
√

∆(q∗1 − q1(x))φ(x) +OP (∆) (4.16)

Note that the error made in relying on asymptotic normality is a function of
q1(x), whereas the bootstrap error is a function of the difference between
q∗1(x) and q1(x). Taking the plim of q∗1(x), the right hand side of the
equality sign of equation (16) converges to:

√
∆(plim∆→0q

∗
1(x)− q1(x))φ(x) + oP (

√
h)

This implies that if plim∆→0q
∗
1(x) − q1(x) = 0, i.e. the bootstrapping

method can perfectly match the coefficients of the first three cumulants of
T ∗∆ to those of T∆ to order O(

√
∆), the first term in error becomes zero,

and thus the bootstrapping error is of order oP (
√

∆) which is smaller than
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the normal asymptotic error of order O(∆).

For the i.i.d. bootstrap they found the following properties as ∆ → 0,
conditional on the path of υt:

• plim∆→0q
∗
1(x)−q1(x) = 1

6 (2x2+1)
[

15σ̄6−9σ̄4σ̄2+2(σ̄2)3

(3σ̄4−(σ̄2)2)3/2 − 4√
2

σ̄6

(σ̄4)3/2

]
• when υt = υ ∀ t then: plim∆→0q

∗
1(x)− q1(x) = 0

• In the general case:

|plim∆→0q
∗
1(x)− q1(x)| ≤ |q1(x)|

The second point shows that when volatility is time-invariant the differ-
ence goes to 0 and hence the bootstrap method provides an asymptotic
refinement through order O(

√
∆) over the normal asymptotic approxima-

tion. This result relies on the fact that when volatility is constant σ̄q = (σ̄)q.
However, this does not hold in case of time-varying volatility. The rate of
convergence of the bootstrap error is then of order OP (

√
∆) which is the

same as the order of the normal asymptotic error. This contradicts the
results found in their Monte Carlo simulations. They argue that to order
O(
√

∆) the magnitude of normal approximation error is of q1(x) and the
magnitude of the bootstrap error equal to plim∆→0q

∗
1(x) − q1(x). As a

consequence of the last point made above:

|plim∆→0q
∗
1 (x)−q1(x)|

|q1(x)| ≡ r1(x) ≤ 1

The inequality above states that the bootstrap error is always smaller than
the normal approximation error. In a similar way it can be shown that the
difference between the quantiles of the distributions T∆ and T ∗∆ is smaller
than the difference between the quantiles of the distribution of T∆ and the
standard normal distribution.

For the wild bootstrap the error is defined as:

• plim∆→0q
∗
1(x)− q1(x) =

−
[
(plim∆→0κ

∗
1(x)− κ1(x)) + 1

6 (plim∆→0κ
∗
3(x)− κ3(x))(x2 − 1)

]
• plim∆→0κ

∗
1(x)− κ1(x) = − 1

2
σ̄6

(σ̄4)3/2 ( 5√
3
A∗1 −A1)

• plim∆→0κ
∗
3(x)− κ3(x) = σ̄6

(σ̄4)3/2

[
( 5√

3
B∗1 −B1)− 3( 5√

3
A∗1 −A1)

]
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Here A1 = B1 = 4√
2

. Again the ability to provide an asymptotic

refinement relies on the ability of the bootstrap to match the cumulants
of T∆. Matching the cumulants is done by choosing the distribution of
ηi. In our simulations we chose ηi ∼ N(0, 1). Goncalves and Med-
dahi actually showed that by choosing the standard normal distribution
plim∆→0q

∗
1(x) − q1(x) = ( 5√

3−1
)q1(x) ≈ 1.89q1(x). This implies that

the wild bootstrap error is actually bigger than the normal asymptotic ap-
proximation. This is confirmed by the Monte Carlo simulations for both the
one-sided and symmetric two sided confidence interval. The N(0,1)-wild
bootstrap significantly overestimates these types of confidence intervals. In
case of equal-tailed confidence intervals the N(0,1) bootstrap does seem to
provide an improvement over the normal asymptotic approximation. This
is also the type of confidence interval we investigate here, and choosing ηi
to be standard normally distributed we do find better coverage rates com-
pared to the CLT. Instead of the standard normal distribution they suggest
to chose a Bernoulli distribution for ηi as this allows for the cumulants
to be completely matched to order O(∆). However, in the case of equal
tailed confidence intervals, for low number of observations the Monte Carlo
simulations show the N(0,1)-bootstrap to provide better results than the
matched-Bernoulli-bootstrap.

4.3 Simulation

As the underlying model and the bootstrapping methods have been reviewed,
we move on to the simulation process. The idea is to test the ability of the
bootstrap to provide higher order refinements when the underlying model
for the price is extended to incorporate intra-day periodicity. In this section
the simulation of the various underlying processes of interest are discussed
as well the construction of confidence intervals.

Three different models are investigated. The first is a model with con-
stant volatility and no intra-day periodicity. The results of this model will
be used as a benchmark for the other models. In the second model the
volatility term consists of a constant volatility component and a determinis-
tic periodicity factor. The last model investigated includes both an intra-day
periodicity and a time-varying volatility component. The price simulation
process uses a standard Euler discretization scheme. For all models the
number of underlying returns is 3456. This is a nice multiple of the number
of returns which are actually observed. The number of actual observations
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can equal: 12, 48, 96, 288, 576, and 1152. For each model 3456 underlying
returns are simulated and these returns are used for all frequencies combined
with all IC construction methods (CLT, i.i.d , and wild). For example, in
case 12 returns are observed, each of these returns is based on 3456/12 =
288 underlying returns. This makes it easier to compare different methods
and different data frequencies. For the last two models, which both include
intra-day periodicity, the filtered as well as the non-filtered returns are used.
As the underlying process does not include a jump component, we use the
non-parametric filtering method based on the standard deviation of r̄i.

In order to incorporate a periodicity factor in line with empirical findings,
we follow Hecq, Laurent, and Palm (2012) in their Monte Carlo simulations
and assume fi to be the sum of various sinusoids over the period of 1 day:

log f∗i =

4∑
l=1

γ2l−1 cos

(
i2πl

1/∆

)
+

4∑
l=1

γ2l sin

(
i2πl

1/∆

)
(4.17)

where γ = (-0.24422, -0.49756, -0.054171, 0.073907, -0.26098, 0.32408,
-0.11591, -0.21442). This leads to a function of the time of the day with
three peaks corresponding to the activity on the three main regions across
the world.

When the volatility component is time-varying, it follows the GARCH(1,1)
diffusion model studied in Andersen and Bollerslev (1998a):

dυ2
t = 0.035(0.636− υ2

t )dt+ 0.144υ2
t dW1t

Note that here W1t is assumed to be independent of Wt in equations (1)
and (2). Goncalves and Meddahi did consider the possibility of a depen-
dence between the Wiener processes, i.e. leverage effect, in their Monte
Carlo simulations. The results found for the inclusion of this extension were
not significantly different from the results of the baseline model.

Relying on the normal asymptotic theory the 95% two sided confidence
interval for IV is given by:

IC
(2)
0.95 =

(
RV − z0.025

√
∆V̂ , RV + z0.975

√
∆V̂

)
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where the z-values denote the quantiles of the standard normal distribution.
As Goncalves and Meddahi argued, the distribution of T∆ is not standard
normal when the number of observations is low, and therefore the IC given
above will not be able to cover 95% of the IV. It is not possible to derive the
true distribution of T∆ along with its quantiles, As the true IV is unknown,
because the true IV is not known. However, the bootstrap T ∗∆ can be
simulated, since both the bootstrapped statistics as well as RV itself are
known. Goncalves and Meddahi showed using Edgeworth expansions that
using the quantiles of T ∗∆ should give better coverage rates. The bootstrap
confidence interval is given by:

IC
(2)∗
0.95 =

(
RV − q∗0.025

√
∆V̂ , RV + q∗0.975

√
∆V̂

)
where q∗α is the α-quantile of the distribution of T ∗∆.

We are only looking at equal tailed bootstrap intervals here. Goncalves
and Meddahi also considered symmetric bootstrap intervals, where instead
of using the 2.5%- and 97.5%- quantiles of the distribution of T ∗∆, the
95%-quantile of the distribution of |T ∗∆| is used. Due to the asymmetry of
the distribution of T∆ the symmetric intervals underperform compared to
the equal-tailed ones. Only equal-tailed IC are therefore considered here.
Goncalves and Meddahi also considered the log transform of the of the
confidence interval. For the IC based on the CLT and for the symmetric
bootstrap IC, this led to a significant improvement in the coverage rates.
However, this was not the case for equal tailed IC.

4.4 Results

In this section the results of the Monte Carlo simulations are discussed. The
results for all models are given in table 1. Note that table 1 reports the
simulations using raw returns, instead of filtered. Before we move on to
the models with intra-day periodicity, we first take a look at the benchmark
model. The results found for the constant-volatility model are in line with
theory and the results found by Goncalves and Meddahi (2009). Relying on
normal asymptotic theory leads to an under-coverage at lower frequencies,
but as the number of intra-day observations increases the coverage rate con-
verges to 95%. Both bootstrapping methods provide a refinement over the
normal asymptotic theory. In fact, even at low observation frequencies, the
coverage rate already lies around 95%. The results for the i.i.d. bootstrap
are in line with the theory that when υt = υ ∀ t , plim∆→0q

∗
1(x)−q1(x) = 0
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and thus the i.i.d. bootstrap provides an asymptotic refinement over the nor-
mal asymptotic approximation. According to the theory the wild bootstrap
should perform worse in comparison to the i.i.d. bootstrap, but this is not
the case.

Next to the results of the benchmark model, the coverage rates for
the model with a constant volatility component and intra-day periodicity
are given. As expected, due to the time-varying periodicity factor the re-
turns become heteoroskedastic, which causes the rate of convergence to a
standard normal distribution of T∆ to become slower. However, the conver-
gence still takes place. Due to the inclusion of a periodicity factor, although
still deterministic, υt becomes time-varying. The i.i.d. bootstrap does not
provide an asymptotic refinement through order O(

√
∆) over the normal

asymptotic approximation any more. However, as Goncalves and Meddahi
have shown, the magnitude of the first term of bootstrap error is always
smaller than the magnitude of the first term of the normal approximation
error. As a consequence the results of the i.i.d. bootstrap are slightly
worse compared to the benchmark model, but still indicate a refinement
over normal asymptotic theory. When υt is time-varying the wild bootstrap
would seem like a natural choice. However, the theory suggests when the
external variable is chosen to be standard normally distributed, the i.i.d.
bootstrap outperforms the wild bootstrap. This is confirmed by our results.
We find that even for the choice of the standard normal distribution, the
wild bootstrap does provide a refinement over the normal asymptotic theory.

The last model in table 1 is the one where also the volatility component
st becomes time-varying. Although both components of the volatility factor
are now time-varying, in general the results do not deteriorate much. This
could be explained by the fact that the variance of the periodicity factor is
much higher than the conditional variance of the stochastic volatility term.
Thus the bootstrapping methods are still able to improve upon the asymp-
totic theory and the i.i.d. outperforms the wild bootstrap.

In table 2, the results for the filtered returns are presented. Comparing
the results of the constant volatility without periodicity based on raw returns
with the constant volatility model with intra-day-periodicity based on the
filtered returns, the results are strikingly similar. This is expected, as accord-
ing to the assumption made by Andersen and Bollerslev, the filtered returns
are now approximately i.i.d. normally distributed with variance s2. As the
returns have been filtered using an estimate of the true periodicity factor fi,
some degree of heteroskedasticity remains, but very little. As the filtered
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returns are almost i.i.d. distributed, the rate of convergence to a standard
normal distributed variable of T∆ should be similar between both models.
This is confirmed by the results presented in tables 1 and 2. For the filtered
returns, the results for the models with and without a time-varying volatility
component are very similar. This is in accordance with the fact that the
conditional variance of the stochastic volatility component is relatively small
compared to the variance of the periodicity factor in our simulation.

4.5 Conclusion

In this paper literature related to bootstrapping realized volatility and intra-
day periodicity has been reviewed. A Monte Carlo simulation has been
performed to investigate the impact of intra-day periodicity on the normal
asymptotic theory and the ability of the bootstrapping methods to provide
a refinement. When using raw returns to compute the relevant statistic, we
found the periodicity factor to have a significant impact on the coverage
rates. Although the volatility component might not be stochastic and con-
stant over time, when there is periodicity present in the volatility term, the
returns are not i.i.d. distributed any more. This has an impact on both the
normal asymptotic approximation as well as the bootstrapping methods. In
addition to using raw returns, filtered returns have been used as well. This
led to an improvement in coverage rates for both models with and without a
time-varying volatility component. Filtering the returns leads to a reduction
in the degree of heteroskedasticity. In general we found the i.i.d. bootstrap
to provide better results than the wild bootstrap. This is in line with the
theory derived by Goncalves and Meddahi. The wild bootstrap on the other
hand performs better than suggested by their study.

Note that although the Monte Carlo simulations suggest the bootstraps
to perform well, even in presence of intra-day periodicity, problems might
occur when implementing them in practice. None of the results presented
above are robust to the inclusion of a jump component in the underlying
process. In the presence of jumps, Realized Volatility is not a consistent
estimator of IV any more and therefore one can not rely on this estimator.
Although asymptotic theories have been derived for consistent estimators,
the asymptotic theories themselves are derived under the null of no jumps.
The distribution of the difference between the estimator and the IV will de-
pend on the jump size and jump frequency and does not have to be asymp-
totically normally distributed. As a lot of empirical research has shown the
presence of jumps in return data, this is a problem of serious nature for
confidence interval estimation.
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4.6 Tables

Table 1: Equal Tailed CI using raw returns

CV CV + Per. GARCH(1,1) + Per.

CLT i.i.d. wild CLT i.i.d. wild CLT i.i.d. wild

12 85.82 95.46 95.28 79.42 93.00 94.70 79.60 92.14 94.04
48 92.38 95.30 94.54 89.10 94.34 93.38 88.08 94.04 93.68
96 93.22 95.18 94.94 91.58 95.00 94.18 90.84 94.92 94.10

288 94.50 95.10 95.48 93.86 95.00 94.32 92.82 94.08 93.52
576 94.60 94.84 95.04 94.46 94.98 94.68 93.18 94.04 93.74

1152 94.92 95.30 95.18 94.56 95.02 95.04 92.26 94.31 93.08

Table 2: Equal Tailed CI using filtered returns

CV + Per. GARCH(1,1) + Per.

CLT i.i.d. wild CLT i.i.d. wild

12 85.90 94.44 94.54 86.36 95.46 93.90
48 92.64 95.60 93.96 92.18 95.36 94.66
96 93.36 95.56 94.06 93.70 95.36 94.88

288 94.90 95.56 95.20 94.78 95.32 94.78
576 94.72 95.02 94.80 94.50 94.76 94.22

1152 94.52 94.56 94.42 95.28 95.62 95.60
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