
Summary

Maastricht University is offering a MBA program for people that have a
bachelor degree and at least 5 years of working experience. Within the MBA
program, students work in groups of 5 during a two year cycle. This thesis
is about the formation of the student groups. The MBA program contains
60 students. Every year, two intake moments take place that usually allow
15 new students to enter. All 60 students follow the same course at the
same time, implying that the order in which a student follows the courses
depends only on the moment at which he/she starts the program. Every
two periods, The university creates new student groups according to a set
of hard and soft constraints, such that well-diversified groups are formed.
Therefore, the student-with-student history, gender, nationality, and level of
expertise of each student is taken into account. Hence a mapping from a set
of students to groups is created that takes into account the corresponding
constraints. The university chooses a group leader for each group.

Two general solution methods are applied to the MBA sectioning prob-
lem. The first method uses the simplex algorithm to solve the problem.
Therefore an integer linear program formulation of the problem was needed,
and used as an input for an efficient ILP solver. The second approach starts
with an initial feasible solution and improves upon this feasible solution us-
ing different improvement algorithms. The quality of each feasible solution
depends on the calculated objective function value that measures the level
of satisfaction of the different constraints. Different initial solution and im-
provement algorithms are discussed that help to obtain a feasible solution
with an objective function value that is as low as possible. The imple-
mented improvement algorithms are the Descent Improvement algorithm,
Tabu Search, Simulated Annealing, and the Bipartite Weighted Matching
Improvement algorithm. The first three algorithms make individual students
swap between existing group formations. The Bipartite Weighted Matching
Improvement algorithm iteratively selects a student from each group, and
finds local optimal solutions for a bipartite matching problem in order to
improve the overall objective value of the whole problem.

In order to test the algorithms, one has to make sure that the instance
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on which the algorithms are tested mimics a real life example. Therefore, a
simulation program is established that mimics the two year cycle and pro-
duces such an instance. Empirical results show that the best improvement
algorithm considered is the Bipartite Weighted Matching Improvement al-
gorithm. This algorithm, combined with an initial solution algorithm, is
now being implemented into the current computer system of Maastricht
University.
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4.1 Introduction

Many schools and universities in today’s society face the task of allocating
students, children, or teachers to different groups. For example, starting
with primary schools, groups are created for all kinds of activities. Each of
these groups may be created according to different preferences. One prefer-
ence could be not to have too many boys in one group. Moreover, teachers
may be grouped together and have to be allocated to classes in order to
make feasible and desired teacher-class combinations. For example in pri-
mary schools, there exists the challenge of assigning parttime and full-time
working teachers to different grades such that teachers are not continuously
teaching the same children, and that furthermore working hour preferences
are taken into account. Also in universities, allocation of students to groups,
also known as sectioning of groups, takes place. A widely studied topic in
the literature is the problem of ultimately sectioning university students with
the same course into groups that will have the course at the same moment,
to prevent and decrease overlap of student timetables. The following prob-
lem, which is most closely related to the latter problem from above, will
be discussed in depth and is the main focus in this thesis. In this bachelor
thesis, the student sectioning problem of the MBA program at the School of
Business and Economics faculty of Maastricht University (SBE) is analyzed
and solved by different methods. These methods will be compared to find
the most efficient and effective methods that lead to high quality solutions.
Similar to the other problems above, here groups of students have to be
formed. Aspects such as nationality, gender division, level of expertise, and
team member histories of students are taken into account to create groups
that are in accordance with the preferences.

This thesis starts with a problem description of the problem that is
tackled. Additionally, we provide different ways of modeling the problem.
Thirdly, a literature review is presented that shortly describes some of the
currently available literature that is related to the problem. We continue
with an extensive explanation of different algorithms for finding initial, fea-
sible solutions. Among them, a randomizing algorithm, a greedy algorithm,
and an algorithm that iteratively uses optimal bipartite matchings to find a
good feasible solution. Thereafter, different improvement algorithms will be
discussed and tested. Finally, a conclusion is presented, and further possible
research is discussed briefly.
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4.2 Problem Description & Modeling

4.2.1 Problem Description

This thesis discusses the MBA student sectioning problem at the SBE. To
obtain a Master of Business Administration (MBA), one has to follow a
program of at least two years. To be classified as a candidate for the MBA
program, you need at least five years of working experience. The problem
of the SBE is to allocate the students of the MBA program to groups, such
that the soft and hard constraints are satisfied. Stated differently, a mapping
from a set of students to groups will be created that takes into account
the corresponding hard and soft constraints. After a short introduction on
the aspects of the MBA program, we continue with the general problem
description and its constraints.

Each year, during each module of the program, a single course is given
to all students at a time. For each of these modules, group divisions are
established. Each module may consist of more than one course which are
given sequentially, but the courses in one module have the same teams. On
top of the normal modules, the MBA students also need to follow residen-
tial weeks during the program. The MBA program consists of six modules
and six residential weeks. The order in which a student follows the courses
depends only on the moment at which he/she started the program. Addi-
tionally, every student will do all modules. To make things clear, Figure 4.1
shows the complete MBA program with its corresponding modules, periods,
intake moments and courses.

At each intake moment, the number of students entering the program
is chosen such that the total number of students stays equal to 60. Under
normal circumstances the amount of people per group is five. Usually, there
are around twelve groups, since student groups containing four people are
preferred above groups that contain six people. Every year, two intake
moments take place such that ideally, 15 people are admitted for each of
these periods, assuming only few people will have a study delay or drop out.

When the amount of students in a module is not exactly a multiple of
five, the university creates some groups of four students. Each of these
groups has a team leader that is chosen by the university. Each of these
team leaders is allowed to choose up to two team members from the rest
of the students. These may also be students that were in the same group
with each other earlier. The remaining two up to four students are selected
by the university in such a way that the following four soft constraints
are satisfied in the best possible way: (i) The first soft constraint is to
create teams such that no two team members have worked together during
previous modules. Although it may not be completely possible, it is at least
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tried to keep these conflicts to a minimum. (ii) Students that are just
starting the MBA program are preferably allocated to groups that contain
students that have a higher level of expertise within the program. (iii) It
is desired to cluster students together in such a way that a good mixture
of nationalities/languages is created. (iv) Female students are preferably
equally divided among the groups, such that no groups of only women exist.
Hence the definition of specific problem is as follows:

Definition 1. MBA student sectioning is the assignment of students to
groups, such that:

1. Student-with-student histories are taken into account to create diver-
sified groups.

2. A good mixture of nationalities is created.

3. There is a fair mixture of gender among the groups.

4. No group contains only students that are just starting the MBA pro-
gram.

Figure 4.1: MBA cycle

Next to the formation of groups for each of the six modules, group
configuration for the residential weeks are established. In each of the six
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residential weeks, students have to work in groups of six people. When the
amount of students that are participating is not a multiple of six, some of
the groups are allowed to be of size five. The sectioning of students for the
residential weeks further faces the identical constraints that are applicable for
the regular module student-sectioning problem. The sectioning of students
for modules and residential weeks happens in an alternating matter, which is
also confirmed by Figure 4.1 on the previous page. It is preferred to take the
student history for both the residential weeks and the regular modules into
account at the same time, but if scheduling problems occur, we separate the
student histories for both the module and residential problem. For example,
for a module group sectioning, in this case only the history of previous
modules has to be taken into account, instead of taking both the residential
and module history into account.

4.2.2 Penalty Function

The MBA student-sectioning problem of the SBE obtains a general objective
function, to identify the level of satisfaction of a feasible solution. The size
of the groups is the only real hard constraint, which makes it fairly easy to
create a feasible solution. For this reason, the hard constraints are not dealt
with through the penalty function, but are handled separately. The overall
penalty value corresponds to the sum over all independent penalty values
from each group. In a student group, each of the four soft constraints corre-
sponds to a separate penalty value indicating the level of satisfaction of the
particular constraint. The overall objective is to minimize the sum over all
penalty values from each of the four soft constraints over every group. In this
way, higher quality solutions will correspond to a lower overall penalty value.
The penalty functions of the soft constraints contain adjustable weights, in
order to be able to change the preferences for each of the constraints. Each
of the four soft constraints needs a different approach to calculate the cor-
responding penalty value. The four separate penalty functions per group
are defined below. The penalty functions for the individual soft constraints
regarding level of expertise, gender, nationalities, and student-with-student
history are denoted by P1, P2, P3, P4 respectively.

Variables:

x(1) =


1 if no advanced student is contained in the group

0 otherwise

x(2) =


|AmountOfFemales−AV G| if |AmountOfFemales−AV G| > 1

0 otherwise
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x(3) = AmountOfPeopleInGroup−AmountOfNationalities

x
(4)
i,j =


1 if student i has been in a group with student j

0, otherwise

Input:

W1 = penalty weight regarding level of expertise

W2 = penalty weight regarding gender mix

W3 = penalty weight regarding nationalities

W4 = penalty weight regarding student-with-student histories

Um = set of all possible student pairs in group m

M = set of all groups

Soft constraint penalty functions for a group m ∈ M

P1 = x(1) ∗W1

P2 = x(2) ∗W2

P2 = x(3) ∗W3

P4 =


(i,j)∈Um

(x
(4)
i,j ∗W4)

Overall penalty function:

P =

m∈M

(P1 + P2 + P3 + P4)

In the first constraint P1, x(1) is equal to one when the corresponding
group does not contain an advanced student. As such, a penalty value is
added when no advanced person is contained in a group. The weight,W1, is
kept equal to 275, but as stated earlier, it is adjustable to change the order
of preferences. The second penalty equation, P2, takes into account the
gender mix preference by multiplying the difference between the number of
females of a group minus the average amount of females per group (AV G)
by the female penalty weight W2, but only if this difference is larger than
one. In this way, minimizing the penalty function indicates that the amount
of women per group should be close to the average. The weight of this part
of the penalty function is equal to 47 throughout the rest of the thesis. In
the third equation, we try to minimize the difference between the amount of
students and the amount of nationalities in a group in order to create a good
mixture of nationalities. The penalty weight for P3 is set to 450. Penalty
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function P4 is defined in such a way that putting students that have been

together in a team before in the same group have low preference. x
(4)
i,j is

defined for each possible student pair (i, j) in a group, and indicates whether
a pair of students has been in the same team previously. For every group
m ∈ M , Um is defined as the set of possible student-with-student pairs in

this group. By adding up the binary values x
(4)
i,j in the corresponding set,

we obtain the amount of student-with-student-combinations, that occurred
in the past. Multiplying this value by W4, which is set to 350, results in the
group penalty value for the student-with-student history constraint. Finally,
adding up the individual penalty functions of the four soft constraints for all
groups leads to the overall penalty function, which we try to minimize.

4.2.3 ILP

It is useful to model the problem differently to test different methods of
solving the MBA sectioning problem at the SBE. Formulating the problem
as an integer linear program (ILP) is another way of modeling the MBA
sectioning problem of the SBE. The ILP formulation of the MBA sectioning
problem at the SBE with the corresponding method of solving may be used
as a constructive algorithm. The constraints are formulated slightly differ-
ently from the constraints from above to fit the needs of an ILP formulation.
The ILP formulation is presented below. However, the explanation of the
integer linear program is further discussed in Chapter 4.

Sets corresponding to the ILP:
N is the set of students
M is the set of Groups
D is the set of nationalities.

Model variables:
Xi,k, Binary variable that states whether student i is in group k.
Yk, Amount of nationalities in group k
Zk,l, Binary variable that states whether for group k, nationality l is con-
tained.
Ui,j , Binary variable stating whether person i is scheduled with person j.
Vi,j,k, Binary variable stating whether person i is scheduled with person j
in group k.

Input:
ai,j , Binary matrix that states whether student i has been together in a
team with student j before.
bi, Binary vector that states whether student i is in the program for more
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one year.
ci,l, Binary variable stating whether person i has nationality l.
di, Binary variable stating whether student i is female.

Model:
Objective function:
Minimize:


i∈N


j∈N

ai,j ∗ Ui,j ∗ Penalty +


k∈M
(5− Yk) ∗ Penalty (4.1)

Such that:


i∈N
Xi,k ∗ bi ≥ 1 ∀k ∈ M (4.2)

Zk,l ≥ (


i∈N
Xi,k ∗ ci,l)/5 ∀k ∈ M, ∀l ∈ D (4.3)

Yk =


l∈D
Zk,l ∀k ∈ M (4.4)


i∈N

Xi,k ≤ 5 ∀k ∈ M (4.5)


k∈M
Xi,k = 1 ∀i ∈ N (4.6)


i∈N

Xi,k ∗ di ≥ 1 ∀k ∈ M (4.7)

2 ∗ Vi,j,k ≥ Xi,k +Xj,k − 1 ∀i, j ∈ N, ∀k ∈ M (4.8)

Ui,j =


k∈M
Vi,j,k ∀i, j ∈ N (4.9)

4.2.4 Hardness of the problem

Some sectioning problems may not be optimally solvable in polynomial time.
In our case, the allocation of students to groups has to be done according
to different type of constraints. Depending on the constraints and the
objective, a problem may become NP-hard, in which case it is uncertain
whether a polynomial time algorithm exists to solve the problem optimally.
In this case, on larger instances, approximation algorithms become useful
that may result in close-to-optimal answers.

Without the constraint on the student-with-student history, the section-
ing problem is easier to solve. The difficulty of the problem is best explained
by the implications a change in the allocation of students has on the penalty
value. If a swap of students between two groups occurs, this will have im-
plications on all other students within each group. This is because every
connection between every pair of students in a group matters to the overall
evaluation of the group, and hence to the penalty value, and the decision of
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how to allocate students to group leaders most efficiently. For a group of
five students, ten student links are active and have influence on the penalty
value. Note that this constraint is very different from for example the nation-
ality constraint, as in this case, the only factor that matters when a group
change occurs, is the amount of nationalities in the group itself. Stated
differently, switching a person to another group could have effect on the
amount of nationalities in the group, but does not change the evaluation of
the group regarding the connection between every pair of students in the
group.

It is likely that the student sectioning problem of the SBE is NP-hard.
Feo and Khellaf [8] prove in their article that a similar sectioning problem is
NP-hard in two different ways. In this thesis, the definition and proofs for
NP-hardness are of less importance, and for this reason, no further proofs are
provided. Since NP-hardness seems plausible, less attention is given to those
types of algorithms that try to find purely optimal solutions, which would
still be useful on small instances. Nevertheless, some attention is given to
the integer linear program formulation of the problem, and its usefulness.
Instead, the main focus is on finding sophisticated initial solutions with
corresponding improvement algorithms and other approximation algorithms
that lead to high quality solutions.

4.3 Literature Review

Different literature is shortly described, that is either directly related to
the student sectioning problem or indirectly related but still of use for the
accomplishment and creation of student groups. The constraints regarding
the MBA sectioning problem are either hard, or soft constraints. These
different type of constraints need different approaches [13]. Hard constraints
are the conditions on variables that must be satisfied to obtain feasibility,
whereas soft constraints may be violated, but these violations should be
minimized to take into account the preferences as much as possible.

4.3.1 General Literature

A very general class of problems that includes the MBA student sectioning
problem of the University of Maastricht is the class of constraint satisfaction
problems. The broad set of problems that try to find a most favored outcome
given hard and soft constraints are referred to as constraint satisfaction
problems. A complete solution assigns a value to each of the variables,
such that all hard constraints are satisfied. The objective and preferences
that come along with the problem are expressed by the soft constraints.
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These soft constraints aim to reach a complete solution that violates the
soft constraints the least. Marte [10] and Murray and Rudova [13] define the
constraint satisfaction problem as it being the problem of finding a solution
on an instance (X, δ, C), given a set of variables X, a set of constraints C
over X, and a total function δ on X that associates each variable with its
domain.

Student sectioning could also be identified as a graph partitioning prob-
lem, or more specifically, as a minimum cut into bounded sets problem.
Khallaf and Feo [8] define the k-way graph partitioning problem as the prob-
lem of partitioning the nodes of a weighted graph into k disjoint subsets of
bounded size, such that the sum of the weights of the edges whose end ver-
tices belong to the same subset is maximized. The k-way graph partitioning
problem with restrictions on the cluster sizes, is also known as the minimum
cut into bounded sets problem. A similar sectioning or matching problem is
the k-partition multidimensional assignment problem discussed by Bandelt
and Burkard [2, 3]. Instances of the class of graph partitioning problems
or matching problems, have been proven to be efficiently solvable in many
cases. For instance, Edmonds [14] found polynomial time algorithms for
different matching problems. Among them standard matching problems,
weighted matching problems, bipartite matching problems, and b-matching
problems. It was tried to transform the MBA sectioning problem to one of
the indicated matching problems from above. However, no solutions were
found that use linear edge weights.

Suppose V (N,E) is an undirected graph with nodes N and edges E.
Now suppose that N is the set of students, and that the each e ∈ E cor-
responds to the penalty value between a pair of students and finally that
k is equal to the number of desired groups. Note that the corresponding
objective function will be different from the overall penalty function used
for the upcoming Local Search methods, as this overall penalty value mea-
sures the performance over each pair of individual students rather then each
individual group. The edge weights stay equal at all times. Note that in
Khallaf and Feo’s definition, the sum is maximized, while a minimization
of the sum over all contained weights is actually attempted in case of the
MBA sectioning problem. The constraints are configured in such a way
that these are stated in terms of direct penalty values between individual
students. The following penalty value structure corresponds to a possible
way of representing the edge weights for the graph representation of our
problem that could be solved as a minimum cut into bounded sets problem:

• Define a penalty value for student pairs that have been in the same
group with each other before in previous periods.
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• Define a penalty value for edges representing pairs of females.

• Define a penalty value for those edges that link an advanced student
with another advanced student that are both longer in the program
than a year.

• Define a penalty for pairs of students that share the same nationality
or language.

4.3.2 Literature on Student Sectioning

Student sectioning specifically is a problem that has been previously stud-
ied by different authors. As every problem demands a different approach,
existing methods are adjusted to find a solution to the student sectioning
problem of the MBA program at the SBE. Student sectioning is in the lit-
erature often seen as a sub-problem of timetabling [15]. Although a lot of
literature exists on timetabling itself, relatively few effort is put into student
sectioning. An example of a problem that additionally belongs to this class
of problems is the operating room scheduling problem in hospitals, where
there is a need to allocate patients to operating rooms, while satisfying the
patient constraints and hospital rules optimally.

The student sectioning handled in the literature is related, but not specif-
ically comparable to the problem that is solved in this thesis. Muller and
Murray [12] mention two different type of initial student section princi-
ples, one for the purpose of optimizing timetables, and the other one to
satisfy student preferences. They furthermore split up their student section-
ing problems regarding timetabling into three different types of sectioning:
Initial student sectioning, batch sectioning, and online student sectioning.
These three sectioning problems all focus on the sectioning of students from
the same course into different sections such that the best timetable can be
created. Initial sectioning is done before the timetable solver is started,
and tries to minimize future student schedule conflicts by grouping students
with similar preferences into similar course sections beforehand. One of the
methods that was used is Carter’s homogeneous sectioning algorithm [5],
which focuses on the coloring principle. The actual allocation of students to
sections in their case is done after an initial timetable is made. An iterative
forward search algorithm was used and resulted in a valuable solution in their
case [11]. The online sectioning problem is less applicable to the problem of
this thesis. The Online sectioning problem algorithms mentioned by Muller
and Murray [12] instantly change the sectioning of students after the basis
of the timetable is made when new or changing student preferences come
in. Any of these sub-problems of academic timetabling seem to have one
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important thing in common: in all these problems, soft and hard constraints
have to be dealt with to assign people to sub divisions of some sort in an
efficient way. Therefore, a solution or an algorithm that is applicable on
one of the sub-problems, is often able to solve the other sub-problems with
some modifications.

For example, our MBA sectioning problem is related to the university
timetabling problem in such a way that if one supposes that each of the
timetable timeslots represents a group, then the question is which person
to put in which group while respecting all hard constraints and satisfying
the soft constraints best. In this way, finding the MBA groups can be quite
similar to finding the solution to the standard student-timetabling problem.
For this reason, literature that provides any type of algorithm that face both
hard and soft constraints, and focuses on academic timetabling, is of use.
Carter [5] categorizes the algorithms used for solving timetabling problems
in four different categories, which are: sequential methods, cluster meth-
ods, constraint based methods, and meta-heuristic methods. Some of these
methods are trying to find effective initial solutions at once, where others
build on existing feasible solutions by changing the timetable in such a way
that soft constraints are satisfied in a more preferable manner. The first
category, sequential methods, solves the timetabling problem usually as a
graph-coloring problem to find a feasible solution from scratch. Each event
(exam/course) corresponds to a node in the graph. Edges display penalty
values between events that should not occur together. Each color in the
graph represents a timeslot. In this way, it is tried to create a conflict free
timetable by coloring/sectioning all the vertices with the available colors in
such a way that the hard constraints are satisfied and hence that a feasi-
ble solution is obtained. To apply cluster methods, sets of events are split
up into groups that satisfy the hard constraints. Thereafter, these groups
are assigned to timeslots to satisfy the soft constraints in a proper man-
ner and to create the feasible timetable. Constrained based approaches use
variables to obtain a solution. These problems are usually related to linear
programs, and are for example solvable with the simplex method. An objec-
tive function takes into account the soft constraints, whereas the additional
constraints in the linear program formulation deal with the corresponding
hard constraints on these variables. Meta-heuristic methods are those meth-
ods that improve on existing feasible solutions. Local Search is one of the
areas that is extensively studied in the literature. Examples of Local Search
algorithms are: Hill-climbing, Tabu search, and Simulated Annealing. These
general methods have been proved to be useful for timetabling [6, 7], but
are generally applicable for all kinds of problems. Also, the other methods
that make use of grouping, coloring, sectioning and linear programming are
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when adapted correctly of use to efficiently solve the problem. The difficulty
of the academic timetabling problem is addressed by several authors. Wille-
men [16], for example showed in his dissertation that various sub-problems
of timetable construction for schools are NP-hard. However, he additionally
shows that some relaxations of the general timetabling construction may
lead to problems that are solvable in polynomial time. As the problem that
is faced in this thesis seems to be of a less extensive degree compared to
some of the algorithms that are discussed in his thesis, different kind of
problem literature may additionally be applicable that may even solve these
related problem in polynomial time.

Until now, we have seen different approaches and methods applicable
for solving the student sectioning problem, or other related similar problems.
Burke et al. [4] phrased that whatever timetabling problem is considered,
significant differences in algorithm requirements and constraints persist. For
this reason, no general best solution that picks the most efficient algorithm
for different automated timetabling problem has to exist. In the following
chapter, we will narrow down on those algorithms that seem to solve the
MBA sectioning problem effectively and efficient.

4.4 Initial sectioning algorithms

In this chapter, we develop several algorithms that find a feasible solution to
the MBA sectioning problem at the SBE. Three initial solution algorithms
are established, which are: a random solution algorithm, a greedy algorithm,
and an iterative bipartite matching greedy algorithm.

4.4.1 Random Feasible Solution

The first and most simple initial feasible solution algorithm is a basic random
solution algorithm. The only constraint that matters in this algorithm is that
at all times, the hard constraint stating that at most five students are in one
group is satisfied. The algorithm that creates this first basic solution starts
with assigning the group leaders. Thereafter, the team member choices
of the group leaders containing zero, one or two students are enforced.
The algorithm finally randomly assigns the remaining students to groups
while satisfying the group size constraint at all times. Note that although
this procedure is very straight forward, it will likely lead to the worsted-
performing group formations.
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4.4.2 Greedy Algorithm

A more sophisticated algorithm than a random feasible solution creator is a
greedy algorithm. We refer to the term ”greedy” as we iteratively assign stu-
dents to groups that lead to the most obvious benefit, while not taking into
account the problem as a whole. The running time of these algorithms is
often lower than very sophisticated initial solution algorithm. For the MBA
sectioning problem, the Greedy algorithm could be interpreted as a method
that produces a random list of students and that iteratively assigns students
from the list to the group leading to the smallest increase of the overall
penalty function, until all students from the list are assigned to a group.
Note that in this process, the hard constraint stating that only five people
can be contained in every group must be satisfied at all times. Rather then
assigning random students to groups, assigning students that are longer in
the program first makes sure that students with more ”freedom” are assigned
later. The more restricted students that have larger student-with-student
histories are put in front of the list. Additionally, assigning women first will
likely cause less trouble in the allocation of students to groups in a later
stage, as only women cause a penalty value regarding the gender mix. On
the other hand, if nationalities are considered for the ordering of the list,
one would start with the nationality that is most common, and end with
the most spurious nationalities. However, this would harm the preferences
of the student-with-student constraint completely. This led to the following
ordering of the list. First, the SBE assigns a group leader to each group.
Second, all pre-selected team members by the group leaders are assigned
to the corresponding groups. Thereafter, the women are put in the list,
by adding first the women that did the largest number of courses from the
program, hence the women that have the highest level of expertise. After
including all women in the list, all men are sorted by their level of exper-
tise and finally added to the list. When the list is finished, the algorithm
iteratively selects and assigns students from the list and assigns the student
to the group leading to the smallest increase of the overall penalty value,
while taking into account the hard constraint on the group size. The algo-
rithm ends when all students are assigned to a group, or no more places are
available in groups.

4.4.3 Constructive ILP

Section 2.3 shows the ILP formulation of the MBA sectioning problem at
the SBE. With the Constructive ILP method for solving the MBA sectioning
problem, it is tried to find an optimal answer to the MBA sectioning problem
rather then just a feasible solution. Different methods exist for solving
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general ILP related problems. For example Branch and Bound or Branch and
Cut are methods that are applicable for solving these kind of problems. We
have chosen for the simplex method to solve our MBA sectioning problem.
The objective function of the corresponding ILP from Chapter 2 consists
of two parts. The first of these parts determines the penalty regarding
the student-with-student history mixture. The second part of the objective
function determines a penalty value for each group regarding the amount of
nationalities. The first constraint makes sure that at least one student doing
the MBA program for at least a year is in each group. Equation (3) indicates
that whenever a nationality is contained in a group, the corresponding Z
variable equals one. Equation (4) is counting the amount of nationalities per
group, and sets the variable Y to the correct number accordingly. Equation
(5) makes sure that the amount of people per group is at most five. In the
next equation, it is made sure that a person is assigned to exactly one group.
Equation (7) makes sure that at least one female is contained in each group.
Note that this is a generalization of the gender mix soft-constraint. One
could make the constraint more sophisticated, but given that on average 25
percent of the total group is female, a lower bound of one is reasonable.
The only drawback of this representation is that unfeasibility would occur
if less than 12 females are contained in the total set of students, assuming
that 12 groups are created in total. In the final two equations, hence in
Equation (8) and (9), it is figured out whether two students are scheduled
in the same group. if both students are in group k, Vi,j,k equals 1 and Ui,j
will automatically also be one.

Tests after implementation did not lead to an answer. Two trials are
done, while non of them resulted in an answer. Both trials were running for
more than one and a half hour. Hence no feasible answer was found with
the constructive ILP method and for this reason, no further results will be
discussed.

4.4.4 Greedy Matching Method

The Greedy Matching algorithm refers to an algorithm that iteratively solves
bipartite weighted matching problems in order to create an initial feasible
solution for the MBA sectioning problem at the SBE. Feo and Khallaf’s [8]
use in their graph partitioning problem also matching methods to establish
groups. Although we represented our problem as a graph partition problem
in Chapter 2, our problem differs from theirs. The MBA sectioning problem
at the SBE needs to assign a different amount of students to every group
(This depends on the amount of predetermined students per group), while
Feo and Khallaf assume equal amount of available places per group. For
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further information, refer to Feo and Khallaf’s [8]. This difference causes
problems when the same methods are applied to the MBA sectioning prob-
lem. However, other matching algorithms are found very helpful.

Given a set of N students andM groups, the Greedy Matching algorithm
iteratively selects a new subset of the to-be-allocated student list. This list
is equivalent to the list used for the standard greedy method and hence has
the same order of the to-be-allocated students. The algorithm finds the
best possible allocation of the selected students to the available groups by
representing the independent sub-problem as a bipartite weighted matching
problem. The bipartite weighted matching problem matches students with
groups. It contains a set of vertices (students) on one side, and a set
of vertices (groups) on the other side. The bipartite weighted matching
problem is furthermore complete. Each student n ∈ N has an edge between
every group m ∈ M . Each edge weight (n,m) corresponds to the increase
in the overall penalty value when individual student n is allocated to group
m. The perfect matching that leads to the lowest overall sum of edge
weights or ”penalty” indicates which student is allocated to which group.
The algorithm continues until all students are assigned to a group. Note that
when groups are full, these groups are not considered in the corresponding
bipartite matching problem anymore. The ILP formulation regarding this
problem is defined as:

ILP:
N is the set of students
M is the set of Groups

Model variables:
Xi,j , Boolean variable that states whether student i is in group j.

Input:
Yi,j , Matrix with boolean values that states for the corresponding student-
group combination the change in penalty value when this singular student i
is assigned to group j.

Model:

Minimize


i∈N


j∈M

Xi,j ∗ Yi,j (4.10)

s.t.


i∈N
Xi,j ∗ Yi,j ≤ 1 ∀j ∈ M (4.11)


j∈M

Xi,j ∗ Yi,j = 1 ∀i ∈ N (4.12)
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The bipartite perfect matching problem from this section minimizes the
sum over all edge weights contained in the matching. This is equivalent
to solving a bipartite maximum weighted matching with nonnegative edge
weights on a complete graph. In this problem, forcing perfect matchings is
not needed, as adding an edge to the matching can only improve the solu-
tion. Different methods for solving the bipartite perfect matching problem
exist. For example, one could use an ILP solver that solves the above ILP
in order to solve the MBA sectioning problem. Another method is the Hun-
garian method initially created by Kuhn [9]. Initially, the Hungarian method
was unique in the sense that it could solve the problem in finite time. In its
earliest form, the algorithm had a running time of O(N4). The Hungarian
method was later improved and became an algorithm running in O(N3). For
additional information, refer to Kuhn [9]. The other method, the simplex
method, is the implemented method that is tested at a later stage of the
chapter. Although the simplex method is not running in polynomial time,
empirical results later support the statement stating the simplex method is
an efficient method for solving the bipartite weighted maximum matching
problem.

Initial Greedy Matching Method

1. Determine a list stating which students will be assigned to groups first.

2. Select the next subset of students in the list, containing at most as
many students as the amount of groups that are still available for
allocation.

3. Determine for each student-group combination the corresponding
change in the overall penalty value.

4. Solve the corresponding bipartite weighted maximum matching problem.

5. Make the allocation just found permanent, and repeat the process from
step 2 until all students from the list are in a group.

Algorithm 1: General steps initial Greedy Matching Method

4.5 Improvement Algorithms

Improvement algorithms are algorithms that start with a feasible solution and
make changes to obtain more refined and more close to optimal answers.
Improvement algorithms we mainly consider are so called Local Search algo-
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rithms. Local Search algorithms are methods that improve currently feasible
solutions by applying local improvements in a predefined search space by
evaluating the corresponding neighboring solutions. These algorithms may
for example terminate when a user satisfactory level is reached, or when a
certain time period is over. Also, the search space with its corresponding
neighborhood may be different per Local Search algorithm. In the following
section, different neighborhoods are defined for different Local Search algo-
rithms. Four Local Search algorithms are considered, which are: Iterative
Bipartite Matching Improvement, Descent Improvement, Tabu Search, and
Simulated Annealing.

4.5.1 Neighborhoods

The improvement algorithms try to improve solutions by considering neigh-
boring solutions. A neighboring solution is the set of solutions that can
be established from a current solution. By defining a neighborhood, we
search through a part of the solution space, rather then the complete set
of solutions, which is a time consuming procedure. The five improvement
algorithms are all based on one or more of the following neighborhoods.
The three defined neighborhoods are “the General Swap Neighborhood”,
“the Worst Performing Swap Neighborhood”, and finally the “ILP Match-
ing Neighborhood”.
General Swap Neighborhood
The general swap neighborhood is defined as the set of solutions (group
formations) that can be formed by swapping a single student in a particular
group with a single student in another group. The neighborhood only covers
those swap solutions for which both students are to be freely allocated. To
be freely allocated students are those students that are not pre-specified by
the university or chosen by a team leader.
Worst Performing Swap Neighborhood The Worst Performing Swap
Neighborhood is similar to the General Swap Neighborhood, differing in the
fact that only swaps occur between a to be freely allocated student from
the ”worst performing” group and a to be freely allocated student from the
remaining groups.
ILP matching neighborhood The ILP matching neighborhood used for the
bipartite weighted matching improvement algorithm is defined as the set of
solutions that can be formed by simultaneously selecting one individual stu-
dent from each group and reassigning these students to groups such that
feasibility is ensured.
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4.5.2 Descent Improvement

One of the more simple improvement algorithms is the the Descent Improve-
ment algorithm. Descent Improvement refers to the improvement heuristic
that iteratively selects a neighboring solution from the search space, that is
kept and used in the next iteration when this neighboring solution results
in a better overall penalty value. The algorithm moves to the neighboring
solution with the lowest penalty value. The neighborhood that is searched
trough is a subset of the General Swap Neighborhood defined above. Con-
sidering every possible swap between every pair of students for all groups
takes time. Therefore, we select three random groups from the set of groups
M . Suppose these groups are group A, B, and C. Given group A, B, and C,
determine all possible swaps between Group A and both groups B and C by
interchanging the to be freely allocated students. For all of the generated
solutions, determine the overall penalty value. The swap that caused the
lowest overall penalty value corresponds to the neighboring solution that is
compared with the penalty value from before the swap. These two penalty
values are used to determine the quality of the neighboring solution. When
the neighboring solution from the swap has a lower penalty value than be-
fore the swap, the swap is made permanent and the algorithm continues
with the same procedure. The stop criteria is met after a pre-specified time
period is over. It is assumed that at the start of the algorithm, the current
solution is feasible, and that more than three groups exist.

Descent Improvement

1. Randomly select three groups.

2. Evaluate the solutions generated from all possible single student swaps
between one of the groups and the other two groups.

3. Compare the best swap solution with the original solution at the begin-
ning of the iteration, and if the penalty value is lower, make the swap
permanent.

4. Repeat the previous steps until stop criteria is met.

Algorithm 2: General Descent Improvement steps
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4.5.3 Tabu Search

Tabu search is a Local Search method that is known for the ability of leaving
local optima in the algorithm procedure. Aarts and Lenstra [1] describe
the Tabu Search method as an iterative technique for improving feasible
solutions with the following essential characteristics:

• The neighborhood should not be empty, hence a subset V of potential
solutions should not be the empty set, and additionally not all of the
potential solutions could be Tabu.

• At each iteration, choose the solution from the neighborhood that
leads to the largest improvement or the smallest decline.

Tabu Search is additionally contained in the class of dynamic neighborhood
search techniques, as the set of neighboring solutions changes over time.
Tabu Search is furthermore an improvement technique that includes more
than one heuristic, which makes it a metaheuristic method. The Tabu
Search algorithm searches in a subset of the neighboring solutions for the
solution with the lowest penalty value, whereafter it performs the corre-
sponding swap, even if the swap would increase the overall penalty value.
The ability of leaving local optima is obtained from the mandatory swaps
in combination with taking into account the Tabu list. The Tabu list is
defined as the list of swaps that are Tabu. In the MBA sectioning problem
at the SBE, a neighboring solution is Tabu when it contains a swap that
has occurred in the previous eight executed swaps.

For example, In a local optimum, the best possible swap in the neigh-
borhood always leads to an increase of the overall penalty value. After the
swap is performed and new swap solutions from the neighborhood are eval-
uated, it may be the case that the solution from the previous iteration is
the only available improvement, which is the solution that was a local opti-
mum. Without the Tabu list, we would end up at the same local optimum.
However, with the Tabu list this is avoided. A Tabu list would not have
been needed if the searched through neighborhood contained all possible
group schedule solutions. But given that the neighborhood is defined in
such a way that only part of the solutions are considered from a current
solution, the Tabu Search method is a method that makes sure that not
the same neighboring solutions are evaluated through time. The Tabu list
is empty at the beginning of the algorithm. While the algorithm continues,
performed swaps are added to the list. When the list size has reached it’s
maximum number, at each iteration, the oldest student pair from the Tabu
list is replaced by the most recent pair. The size of the list is a variable that
is adaptable. When the size of the list is large, the algorithm runs longer
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than with a short list. However, with a longer list it is less likely that one
returns to the same value at a later stage of the algorithm. The algorithm
uses the same stop criteria as the Descent Improvement algorithm, which is
a fixed time period. Feasibility has again to be maintained at all times.

Two Tabu Search methods are implemented and tested. The Tabu list
and most other characteristics are kept the same. However, the first Tabu
Search algorithm (Tabu Search 1) searches through the General Swap Neigh-
borhood, while the second Tabu Search algorithm (Tabu Search 2) searches
through the Worst Performing Swap Neighborhood. Both algorithms try to
find the neighboring solution with the lowest possible penalty value.

In the first step of the algorithm, determine the worsted-performing
group by evaluating the penalty function individually for each group, or
select a random group (depending on the used neighborhood). In the next
step, randomly select two groups from the set of groups excluding the just
chosen group. Make all possible swaps between the initial group and both
randomly selected groups. Remember the solution that leads to the best
penalty value among the swap solutions, and replace the original penalty
value given at the beginning of the iteration with this value if the new solu-
tion has a lower penalty value. Thereafter, add the new solution to the Tabu
list, or if the Tabu list is of maximum size, replace the oldest item from the
list by the new swap pair. Repeat this process until the time constraint is
invalid.

Tabu Search

1. Determine the worsted-performing group or select a random group
(depending on the used neighborhood).

2. Randomly select two other groups.

3. Evaluate the possible solutions generated from single student swaps
between the group from step 1 and the other two groups from step 2
(take however into account the Tabu list).

4. Replace the best swap solution with the original solution at the beginning
of the iteration.

5. Update the Tabu list.

6. Repeat the previous steps until stop criteria is met.

Algorithm 3: General Tabu Search steps
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4.5.4 Bipartite Weighted Matching Improvement algo-
rithm

In Chapter 4, a bipartite weighted maximum matching algorithm is used
to define an initial solution algorithm. In this chapter, the algorithm is
adapted to use it as an improvement algorithm. Given a feasible sectioning
of students into M groups, the Bipartite Weighted Matching Improvement
algorithm selects from each group an available student, and removes the
M students from the groups. Thereafter, the overall penalty value without
these M students is evaluated. Then, for each of the M students, calculate
the overall penalty value when only this individual person is assigned to
each group, and determine the edge weights by calculating the difference
in the penalty value, as is done similarly in the initial sectioning algorithm.
The algorithm continues with finding the optimal solution for the created
bipartite weighted matching problem, hence reallocates the selected students
in the best possible way locally. This process is repeated until the stop
criteria is met. The algorithm uses the ILP Matching Neighborhood defined
in Section 1. The equivalent matching problem is as before solved with
the simplex method. Given that there are M groups, and that from each
group one person is selected, the amount of permutations that exist for a
given bipartite matching problem isM !. Furthermore, given that ideally four
students can be swapped per group, and given that there are at most twelve
groups when the MBA program contains at most 60 people, this implies
that at most 412 different of these bipartite matching problem instances
could be established. Multiplying the amount of permutations per bipartite
matching instance by the number of different possible bipartite matching
problems per iteration results in a value that indicates a neighborhood with
a lot of possible different solutions. However, as only one random instance
of a bipartite matching is used in each iteration, the local optimization only
finds the optimum among 12! solutions. As this method of improvement has
to solve a more difficult problem at every iteration compared to the previously
described improvement algorithms, it is expected that fewer iterations are
performed in the same time period.

4.5.5 Simulated Annealing

Another implemented Local Search method is Simulated Annealing. Sim-
ulated Annealing is a Local Search algorithm that has been proven to be
quite successful in solving practical problems [1]. In the same book Aarts
and Lenstra describe Simulated Annealing as a threshold accepting algo-
rithm with a probabilistic character. A threshold algorithm refers to the
process of solution threshold accepting that uses a non-increasing sequence
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Bipartite Weighted Matching Improvement

1. Select an available student from each group

2. Remove the selected students from the groups and determine the overall
penalty value.

3. Determine for each student the penalty values when this student is
assigned to each group.

4. From the calculated penalty values, determine the edge weights for the
bipartite graph by taking the difference between the overall penalty
value from step 2 and the penalty values from step 3.

5. Determine the optimal solution for the bipartite matching problem using
the simplex method.

6. Update groups, and restart from step 1 until the stop criteria is met.

Algorithm 4: General Bipartite Weighted Matching Improvement steps

of deterministic thresholds, which implies that neighboring solutions with
a higher penalty value occur in a limited way. Eventually, the threshold
decreases to zero, in which case only penalty improvements are accepted.
Simulated annealing refers to the use of randomized thresholds that in prin-
ciple cause acceptance of solutions with large penalty values with a small
probability, whereas small increases of the penalty value occur with a higher
probability [1]. In the MBA sectioning problem, the algorithm ensures se-
lected swaps in the neighborhood when these improve the overall penalty
value. However, swaps leading to a penalty value decrease are performed
with a probability. The following acceptance criterion is used to determine
the probability of accepting in the algorithm:

pc(accept j) =


exp(f(i)− f(j))/c if f(j) ≥ f(i)
1 if f(j) < f(i)

The searched through neighboring solutions are a subset of the General
Swap Neighborhood. For the same reason as in previous sections, a subset
of the complete neighborhood is searched through to find the solution lead-
ing to the largest improvement or smallest increase of the overall penalty
value. Selecting the swaps for evaluation from the neighboring solutions
happens in the same manner as for Descent Improvement. For a recap,
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refer to section 5.2. Simulated Annealing could differently be described as a
Descent Improvement algorithm with the probabilistic character for accept-
ing non improving swaps. After the best possible swap has been found, this
new solution is accepted according to the formula provided above. Meaning
that an improvement of the overall penalty function implies a guaranteed
acceptance of the new solution, whereas an increase in the penalty function
leads to acceptance with a certain probability calculated from the above
exponential function. As the control parameter c a value of 100 is taken,
indicating that an increase in the penalty value of 400 leads to an accep-

tance probability equal to e
−400
100 = e−4 ≈ 0, 01, hence a percentage. After

rejecting or accepting the generated solution, the algorithm continues until
the stop condition is met. The steps are displayed in Algorithm Figure 5.

Simulated Annealing

1. Randomly select three groups from the set of available groups.

2. Find out the best performing swap solution.

3. Use the above specified acceptance criterion to determine whether to
accept the swap solution.

4. Repeat the previous steps until the stop condition is met.

Algorithm 5: General steps Simulated Annealing

4.5.6 Genetic Algorithm

Although no genetic algorithm is implemented, it is still useful to give some
information regarding the usefulness of such an algorithm to solve the stu-
dent sectioning problem at the SBE. Genetic algorithms are based on the
principle that combining relatively high quality solutions from a set of so-
lutions may result in even higher quality solutions. Common actions such
as inheritance, mutation, selection, and crossover are typical for genetic
algorithms.

It seems to be a method that is applicable in our case. However, no
genetic algorithm is found that leads to a good result. The algorithm that
was tried to be implemented is generally based on the idea of keeping those
groups that perform well and reforming the groups that perform worse. If a
group is kept that performs very well individually, this does not imply that
overall, this is a desired result. The goal is to minimize the overall penalty
value, and rewarding those groups that individually perform well may not
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support this goal. Additionally, actions such as crossovers are not logical as
combining different parts from groups will easily change the overall penalty
value completely. Hence it is concluded that the genetic algorithm was not
a very useful algorithm and for this reason, it is not further considered.

4.6 Simulation

As there is no real-life data available for the MBA sectioning problem at the
SBE, simulations are created that result in random instances that fit an ac-
tual real-life example. It is known that a real-life example should contain 60
students in total. Furthermore, assumptions exist on the gender ratio, and
the nationality ratios. The further discussion on the simulation procedure
focuses on the module student sectioning problem rather then the sectioning
problem for the residential weeks. Next to the assumptions, it is decided
to start the MBA student sectioning simulation process at the beginning
of September before the course Human Resource Management starts. The
simulation procedure consists of two main building blocks. The first main
building block is the challenge of mimicking the changes to student-to-
student histories and the size of the set of contained students, whereas the
second building block focuses on simulating new individual students such
that the student specifications are in line with the general assumptions such
as the gender ratios and the nationality ratios.

4.6.1 Simulation through time

During simulations, we have to mimic the MBA program through time until
a set of students is created that have the characteristics that fit a real-
life case. For example, in a real-life case, there exist students that are
in the program for almost two years, whereas other students just started
the program. Both type of students have restrictions in their student-with-
student history, as students that are longer in the program completed more
courses. Mimicking additionally brings the challenge of adding and if needed
removing students from the total set of students at the right time. In order
to create an instance that perfectly mimics a real-life example, one has
to take into account the order in which modules, intakes and residential
weeks take place, as these moments and modules occur in a predetermined
order which changes the characteristics of the students. For example, if
one would first add a new set of students to an instance, and thereafter
create a new schedule, one would get different student-with-student history
characteristics then by doing the opposite. The idea behind the simulation
process is that at all times, there will be pretended as if their are 60 students,
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hence 12 groups. However, at the beginning of the simulation process, fewer
students are actually part of the simulation. Nevertheless, 12 groups will be
established, as in this way we are able to mimic the circumstances of a group
size of 60 at all times. The simulation process only adds, hence does not
subtract students in the beginning of the simulation. Also, the simulation
process stops as soon as the first set of students would be finished with
the MBA program and hence would have to be deleted from the set. This
student base is kept and used for later algorithm tests. In the simulation
process, three steps repeat itself in the right order, which are: addition
of students (a), rescheduling of students (b), and updating students for a
new iteration (c). The first step, addition of students, is discussed in more
depth in the next section but basically adds new students to the set of all
students with individual student characteristics that are in line with a real-
life instance. The second step, rescheduling of all students (this set may
contain less than 60 people), takes into account all characteristics of every
student and tries to form 12 preferably equally sized groups according to the
preferences from the four soft constraints. In this step, the random initial
solution is used due to its ease implementation. The Descent Improvement
algorithm has been used as the only improvement algorithm. As a last step,
the student characteristics are updated after a new schedule is created.
This implies increasing the level of expertise, and updating the student-
with-student histories of each student. Given that the simulation begins
in September before the course Human Resource Management starts, the
simulation steps occur in the following order:

(a) ⇒ (b) ⇒ (c) ⇒ (a) ⇒ (b) ⇒ (c) ⇒

(b) ⇒ (c) ⇒ (a) ⇒ (b) ⇒ (c) ⇒ (a) ⇒ (b) ⇒ (c).

Note that this procedure is based on the module sectioning problem. Figure
1 in Chapter 2 shows that the order in which the steps take place does not
change if the simulation is done for the residential week problem, assuming
that the simulation starts at the same intake moment. However, to do a
simulation for the residential weeks, fewer groups have to be created every
iteration, as the maximum group size is equal to six. After the simulation
finishes, different initial solution and improvement algorithms use the created
instance.

4.6.2 Simulation of individual students

As mentioned earlier, the second building block of the simulation process
is the challenge of maintaining an instance that contains a fair gender and
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nationality ratio compared to a real-life instance. Note that these charac-
teristics are fixed through time for a particular student. Each time the set
of students is enlarged, the simulator generates 15 students. It is assumed
that the number of women is generally 25 percent of the total amount of
students. Hence when a new individual student is generated, it is a female
with probability 0,25. It is furthermore assumed that usually around 23 na-
tionalities exist in the total set of students and that at most seven students
have identical nationalities. The nationality of a new student is determined
by randomly selecting a nationality from an upfront-created set of many
nationalities that mimics the real-life nationality base. After generating all
15 students, the simulation continues in the same way until the stop criteria
is met.

4.7 Computational Results

In this chapter, we discuss empirical results of different initial solution and
improvement algorithms on different common instances. One overall hy-
pothesis is created and the results are interpreted. The algorithms are tested
on different instances and compared to indicate whether certain algorithms
perform better than others.

4.7.1 Hypothesis

It is expected that overall, we will be able to solve the student sectioning
problem at the SBE adequately, but that significant differences in the per-
formance of the methods are noticeable. Given the three initial solution
algorithms: Random Solution, Standard Greedy, and Greedy Matching, we
expect to obtain significantly better results for the greedy algorithms. It is
furthermore expected that all initial sectioning algorithms lead to solutions
that can be further improved. From the four implemented improvement
algorithms, which are: Descent Improvement, Tabu Search, Simulated An-
nealing, and Bipartite Matching Improvement, We expect Tabu Search to
perform well among the algorithms. Additionally, high quality results are
expected for the Bipartite Matching Improvement algorithm, although it
might disappoint in comparison with the running time of other improve-
ment algorithms.

4.7.2 A Solution

Before we turn to the evaluation of each of the algorithms, one solution is
further explored. As an example, we run the simulation on the module prob-
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General Instance Information:
Number of females 19
Number of nationalities 22
Average level of expertise 3
Average number of s-w-s linkages per student 8,8

Table 4.1: Simulation characteristics of one of the instances

General solution statistics
Ininitial algorithm time: 0,339394
Improvement algorithm time: 0,13691
initial solution: 700
improvement solution: 350

Table 4.2: General solution information of one instance

lem with team leaders and five chosen team members. In the example, the
Greedy Matching algorithm and the Bipartite Weighted Matching Improve-
ment algorithm apply. Table 4.1 and Table 4.2 show the obtained solution
and results after completing the initial solution algorithm and running the
improvement algorithm for 20 seconds respectively. Note that the algorithm
does not find an improvement anymore after one second. The final observed
answer has an overall penalty value that is equal to 350, meaning that one
pair of students in the solution has been in the same team before. The
penalty value after running the initial Greedy Matching algorithm is equal
to 700. This is already relatively low, as we will see in a later stage of the
chapter. Table 4.6 in the appendix shows the final group formations that
led to the final penalty value of 350. The students with ID’s 0 up to 11 are
team leaders and stay in group 1 up to 12 respectively, which explains why
these are in this respective order in the table.

4.7.3 Empirical results on the initial solutions

In order to evaluate the different initial solution algorithms, the algorithms
run on three different instances. Table 4.3 summarizes the results from the
three algorithms on the instances. From the table, it can be observed that
the random solution performs much worse in penalty value compared to
the other two algorithms, which is in correspondence with the earlier men-
tioned hypothesis. Also independent of the instance, the time taken for an
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Instance Variable Random Greedy Greedy Matching
1 time: 0,011888 0,36688 0,429436

solution: 7094 350 0
2 time: 0,0147 0,350464 0,404976

solution: 13241 800 94
3 time: 0,014776 0,380394 0,437576

solution: 7588 397 47

Table 4.3: This table shows some data

algorithm to create a feasible solution is stable and quick over different in-
stances. There is a small difference in running time between the two greedy
algorithms, which implies that the individual bipartite matching problems
find the answer very quickly. Overall, there is a preference for the third al-
gorithm. However, as our implementation of this algorithm is dependent on
external libraries that could cause implementation issues when implemented
in current applications on other systems, the standard greedy algorithm is
a good alternative that still establishes a feasible solution with a relatively
low penalty value.

4.7.4 Empirical results on the improvement algorithms

In order to test the improvement algorithms, the simulator generates differ-
ent instances. Furthermore, we test instances with fewer or more predeter-
mined team members/leaders. Table 4.4 presents the solutions generated
by the different algorithms. Table 4.5 shows for each of the determined
overall penalty values, how they are built up regarding the soft constraints.
The instances on which the algorithms are applied contain both team lead-
ers and five team members. Additionally, Figure 4.2 shows the performance
over time for the fifth instance of Table 4.4.

Figure 4.2 shows the general movements of each of the algorithms over
time. The ILP matching algorithm (bipartite matching improvement algo-
rithm) takes fewer steps than the other algorithms to reach it’s final answer.
The number of improvement steps are also mentioned in Table 4.4. This
phenomenon makes intuitively sense, as one iteration is solving a local bipar-
tite matching problem that can lead to larger improvements than individual
student swaps. The penalty value of the ILP matching algorithm solution
is always at least as good as the solutions from the other improvement al-
gorithms on the same instance. Together with the fact that it reaches this
value always within three seconds while the algorithm runs in total 20 sec-
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Figure 4.2: Module problem with group leaders and members Instance 5

onds, makes the ILP improvement algorithm the most preferred algorithm
according to us. Next to the ILP matching algorithm, Simulated Annealing
performs surprisingly well. Simulated Annealing together with Descent Im-
provement finish often quicker than the ILP algorithm does. However, as the
penalty values of the obtained solutions are sometimes higher on the same
instance, these algorithms are not as effective as the Bipartite Weighted
Matching algorithm. Descent Improvement and Simulated Annealing per-
form relatively similar.

On other instance types, for example an instance that rather then 5 team
mates, contains 19 chosen team mates, or instances without any team leader
or team member, different results are obtained. On instances without team
leader, we were five out of five times able to decrease the overall penalty
value to zero with each algorithm, indicating that all soft constraints are
optimally satisfied. On the contrary, when team leaders and many prede-
termined team mates exist, which usually never happens, the penalty value
stays generally higher. This makes intuitively sense, as more fixed student
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linkages persist that could cause conflicts that could not be solved. Both
Tabu Searches only differing in their neighborhood are shown In Table 4.4
and Table 4.5, Tabu 1 corresponds to the Tabu Search algorithm using the
”Worst Performing Swap Neighborhood, whereas Tabu 2 uses the General
Swap Neighborhood. From the implemented Tabu Search algorithms, Tabu
2 performs overall better, but still underperforms compared to the other im-
provement algorithms. The first Tabu Search algorithm more likely causes
sub-optimal answers than the second Tabu Search algorithm. For example,
in later stages of the algorithm, when no direct improvements are found in
the neighborhood, making swaps to the worsted performing groups may not
lead to improvements, while other swaps between groups that are both not
the worsted performing group could still improve the algorithm directly.

Table 4.5 showes that the constraint regarding the level of expertise is
always optimally satisfied, given that the penalty value for all instances is
equal to zero. Secondly, the constraint taking into account the student-with-
student histories is the constraint that overall causes the largest increase in
the penalty value. Very important to mention is that often these partly
penalty values cannot be further decreased, as these penalties are often
caused by pairs of students that have to be together in the same group.

4.7.5 Empirical results residential weeks

Finally, the algorithms are tested on the similar residential week problem.
As mentioned earlier, the groups for the residential weeks do not contain
team leaders. Test results generally show the same algorithm performance
behavior compared to the module student sectioning problem. See Fig-
ure 4.3 in the Appendix for an example. However, rather then Descent
Improvement and Simulated Annealing performing best, for the residential
week problem, the ILP matching algorithm is often performing at least as
good as the Descent Improvement algorithm, which makes the algorithm
even more appropriate. Surprisingly, on these instances with larger group
sizes, the algorithms are able to diminish the penalty value of the solution
to zero for five different instances. This is in comparison with the solutions
of the instances without fixed members with a maximum group size of five.
One would expect that it is more difficult to find a solution for the residen-
tial weeks, because group sizes are larger, and hence for this reason more
student-with-student linkages are maintained. But on the other hand, No
group leaders and members exist, which keeps more swap options open at
the improvement process.
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4.7.6 Overall evaluation of the program

Overall, it is observed that both the improvement algorithms and the ini-
tial solution algorithms are helpful in solving the MBA sectioning problem
at the SBE. Three of the four improvement algorithms seem to diminish
the overall penalty value rapidly, while staying feasible. This includes both
the regular module problem and the residential week problem. The perfor-
mance of the algorithms on the module and residential week problem are
very similar. In the previous sections, where we tested the improvement
algorithms, initial solutions were generated by the random initial solution
algorithm. However, the actual performance of combining the two type of
algorithms is noticeable in Section 7.2, which showed the solutions from the
algorithm combination including the Greedy Matching algorithm and the Bi-
partite Matching Improvement algorithm. In this instance, the improvement
algorithm only found one improvement.

Overall, given the different problem instances, and assuming that the
simulation is correctly representing a real life example, the Bipartite Match-
ing Improvement algorithm makes its last improvement always within three
seconds and produces a solution that is at least as good as the other algo-
rithms. For this reason, it is determined to be the best improvement algo-
rithm choice. Similarly, the Greedy Matching algorithm is the best choice for
creating an initial feasible solution for the MBA sectioning problem at SBE.

4.8 Conclusion

In order to solve the MBA sectioning problem at the SBE, different litera-
ture has been studied to establish four different initial solution algorithms
and four improvement algorithms. With the help of these algorithms, a
simulation was designed and implemented in order to evaluate the different
algorithms on instances that mimic real-life examples. The first three ini-
tial solution algorithms are the Random Solution algorithm, the Standard
Greedy algorithm, and the Greedy Matching algorithm. Additionally, an ILP
was formulated and was tried to be solved with the simplex method in order
to create a high quality feasible solution. From the three initial solution al-
gorithms, the Greedy Matching algorithm returns better solutions than the
other algorithms, also in comparison to its running time. The first adapted
improvement algorithm fitting the MBA sectioning problem is the Descent
Improvement algorithm, which iteratively looks for a simple student swap
that leads to the largest decrease in the overall penalty value in the de-
fined neighborhood. The results obtained from Descent Improvement were
already surprisingly good, given that in most cases, the obtained penalty
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value is equal to the value from the best performing algorithm on any in-
stance. The second applied method, Tabu Search, is a heuristic that forces
a swap at every iteration. This swap in the specified neighborhood either
leads to an improvement of the overall penalty value, or makes the swap
that leads to the smallest worsening of the overall penalty value, taking into
account the Tabu list. Although it was expected to obtain better results
with Tabu Search, other algorithms resulted in better solutions. The next
heuristic, Simulated Annealing, is as the previous two algorithms a Local
Search algorithm. It makes guaranteed swaps when the best possible swap
corresponds to an improvement of the overall penalty value, while it makes
swaps with a probabilistic character if the swap does not lead to an improve-
ment. This probability depends on how large the worsening of the specified
swap is. The final discussed algorithm, the Bipartite Weighted Matching
Improvement algorithm, iteratively selects students from groups, and finds
local optimal solutions for a bipartite matching problem in order to improve
the overall penalty value of the whole problem.

Given the empirical results generated by the algorithms, It is concluded
that a well thought solution can be established almost instantly with the use
of these algorithms. The initial solution and improvement algorithms using
the simplex method to solve bipartite matchings came out as the algorithms
that produce the highest quality solutions. Given that the overall penalty
value from the instances without team leaders and team members is often
decreased to zero, hence that on these instances the four soft constraints
are optimally satisfied, indicates that further constraints could still be taken
into account to create even more diversified groups. Rather then nationality,
both nationality and language could for example be taken into account to
further improve the mixture of groups. Additionally, student performance
could be taken into account to further improve equality of motivation and
intelligence among the groups. The algorithms are presented to the MBA
faculty Personal, and in the near future, realtime data will be tested and
further opportunities will be considered regarding implementation of one or
more of the methods into their current database system. Hence, overall,
it is concluded that a sufficient solution to the MBA student sectioning
problem of the School of Business and Economics at Maastricht University
is established that makes use of Local Search algorithms to find diversified
groups.
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4.9 Further Research

The major drawbacks of the current final outcome are the use of a simplex
library to solve the bipartite matching problems that occur and the relatively
poor performance of the Tabu Search algorithm. If one wants to implement
this code in another framework, it may be difficult to include the libraries
used for solving the matching problems in this framework. In order to more
easily implement the bipartite matching algorithms in the database system at
the School of Business and Economics faculty of Maastricht, independence
of these libraries is required. One algorithm that could be considered which
runs as discussed in polynomial time, is the Hamiltonian method for finding
bipartite maximum matchings. Next to this major drawback, improvements
of discussed methods could be established and further tested. For example,
one could use the linear programming methods in more extend, by attaching
a Tabu list to the current Bipartite Matching Improvement algorithm. Ad-
ditionally, the idea of using optimal local bipartite matchings could be done
on a smaller selection of students and groups. For example, rather then
to do it on 12 groups, optimize on just five groups. Another combination
of methods that could lead to improvements is for example combining or
alternating between the bipartite improvement method and a method that
makes swaps that include more students per group. Finally, opportunities
could be utilized by performing individual student ”moves”. These moves
correspond to moving a student from a group a to another group b without
removing a student from group b. This would only be possible when the
amount of to be scheduled students in for example the module problem is
not precisely a multiple of five.
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In- Algorithm Initial Penalty End time (s) Nr. of
stance Penalty Solution time (s) Impr.
1 Descent 8097 800 0,565984 15

Tabu 8097 800 5,5498 20
Tabu2 8097 800 3,79438 22
Simu 8097 800 0,531568 18
ILP M. 8097 800 1,04366 6

2 Descent 8697 1050 0,241472 14
Tabu 8697 1400 1,08846 19
Tabu2 8697 1400 1,86227 21
Simu 8697 1050 0,31548 13
ILP M. 8697 1050 0,913522 5

3 Descent 8238 1144 1,01498 15
Tabu 8238 1097 2,86442 21
Tabu2 8238 1447 7,41296 23
Simu 8238 1097 1,71542 20
ILP M. 8238 1050 1,72316 8

4 Descent 9047 700 0,679212 18
Tabu 9047 747 1,21162 17
Tabu2 9047 700 16,8015 27
Simu 9047 700 0,473232 16
ILP M. 9047 700 0,868076 5

5 Descent 8841 350 1,0761 17
Tabu 8841 794 2,99804 25
Tabu2 8841 350 2,62812 21
Simu 8841 350 1,29188 16
ILP M. 8841 350 0,995248 5

Table 4.4: General solution and additional information on 5 module problem
instances
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Instance Algorithm Expertise S-W-S Natio- Gender Total:
history nality

1 Descent 0 350 450 0 800
Tabu 0 350 450 0 800
Tabu2 0 350 450 0 800
Simu 0 350 450 0 800
ILP M. 0 350 450 0 800

2 Descent 0 1050 0 0 1050
Tabu 0 1400 0 0 1400
Tabu2 0 1400 0 0 1400
Simu 0 1050 0 0 1050
ILP M. 0 1050 0 0 1050

3 Descent 0 1050 0 94 1144
Tabu 0 1050 0 47 1097
Tabu2 0 1400 0 47 1447
Simu 0 1050 0 47 1097
ILP M. 0 1050 0 0 1050

4 Descent 0 700 0 0 700
Tabu 0 700 0 47 747
Tabu2 0 700 0 0 700
Simu 0 700 0 0 700
ILP M. 0 700 0 0 700

5 Descent 0 350 0 0 350
Tabu 0 700 0 94 794
Tabu2 0 350 0 0 350
Simu 0 350 0 0 350
ILP M. 0 350 0 0 350

Table 4.5: Partial penalty values corresponding to instances from Table 4.4
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4.10 Appendix

Groups: Team member ID’s
Group 1: 0 20 21 29 47
Group 2: 1 16 22 26 58
Group 3: 2 14 31 44 53
Group 4: 3 12 13 32 56
Group 5: 4 37 39 43 45
Group 6: 5 38 41 48 59
Group 7: 6 27 36 40 54
Group 8: 7 19 30 46 55
Group 9: 8 28 42 49 52
Group 10: 9 15 18 25 34
Group 11: 10 17 23 50 51
Group 12: 11 24 33 35 57

Table 4.6: A possible sectioning solution for the module problem with stu-
dent 0 up to 11 chosen as fixed team leaders and some fixed chosen team
members
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Figure 4.3: Residential week problem Instance 3


