
Testing for Multiple Bubbles in Asset Prices

Nikolaus Landgraf ∗

Abstract

Detecting the presence of bubbles in asset prices has become a major interest for policy

makers and central banks. By an early identification of a bubble it might be possible for

them to intervene and prevent the asset price from collapsing. For this purpose, several

econometric tests were invented and some of which summarized by Homm and Breitung

(2011). The power of one of the statistics, the sup augmented Dickey- Fuller (SADF) statistic,

was improved by Phillips, Shi and Yu (2012). They developed a new recursive strategy and

proposed the general SADF statistic.

The present thesis approaches the sup Bhargava and the sup DFC statistic similarly and

computes the power of all statistics on five different bubble generating processes using

Monte Carlo Simulations. It turned out that the modified DFC statistic and the general

SADF statistic have highest rejection frequencies on processes that generate multiple bub-

bles, while the simple sup DFC statistic performed best on processes that do not burst.

Application was conducted to the internet currency Bitcoin and the Japanese stock Index

Nikkei 225. In both instances, the findings of the power investigation were confirmed. Since

both series include bursting bubbles, the simple sup Bhargava and sup DFC statistics were

not able to detect a bubble. On the other hand, the modified sup DFC and the general SADF

statistics showed clear evidence in favor of the presence of a bubble in both series.

∗Nikolaus Landgraf received a bachelor degree in Econometrics & Operations Research at Maastricht Univer-
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1 Introduction

Whether it was greed, low interest rates, speculation or just irrational exuberance, economic

and financial bubbles have evolved and collapsed throughout history again and again. One of

its first kind was the famous Tulipomania. In the 1630s, a bulb in Amsterdam might easily be

sold for an annual income of a wealthy merchant (Dash, 2001). A more recent example that still

impacts global economy is the United States housing bubble of 2006- 2008. Low interest rates

in the United States of America have contributed to extremely rising house prices and therefore

to a surge in its price index, the Case-Shiller home price index. In 2008, this index reported its

largest drop in history. That was the start of the following credit crisis, which is considered to be

the primary cause of the recession in the United States and henceforth of the global financial

crisis (Holt, 2009).

Since the existence of bubbles is far from being a phenomenon nowadays and their bursting

have not only affected economies but also destroyed people’s savings (e.g U.S. housing bubble),

policy makers and central banks have developed a major interest in detecting and testing for the

presence of bubbles. Once a bubble is detected policies can be implemented and the effects of

a bubble collapse might be prevented. In order to test for the presence of a bubble one first

needs to understand what factors drive the price of an asset. Consider below the standard asset

pricing equation (Phillips, Shi andYu (PSY), 2012):

Pt =

∞
∑

i=0

( 1

1+ r f

)i
E(D t+i +Ut+i )+Bt , (1)

where Pt is the price of the asset, D t is the payoff gained from the asset, Ut denotes the

unobservable fundamentals, r f is the risk-free interest rate and Bt represents the bubble com-

ponent. Furthermore, P
f
t = Pt −Bt is the so called market fundamental and Bt is supposed to

have a submartingale property:

E(Bt+1) = (1+ r f )Bt . (2)

As long as Bt = 0, the degree of nonstationarity of D t and Ut is responsible for the character

of the asset price. In other words, the highest degree of nonstationarity of D t and Ut serves as

an upper bound for the degree of Pt . Assuming that both, the Dividend series as well as the

unobservable fundamentals are at most I(1) processes, Pt is stationary in its first difference,

if not in levels. Given the fact that the bubble component follows the submartingale property

(2), the asset price would explode if a bubble exists. Diba and Grossman (1988) have empirically

shown that bubbles exist in stock prices and suggested to use right- tailed unit root tests in order

to test for the presence of bubbles. In the following, researchers have come up with different

tests, many of which based on the same idea of cointegration or unit root testing. Homm and

Breitung (2011) have summarized some of those tests and compared their power to reject the
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null of no bubble on various Data Generating Processes (DGP). PSY (2012) on the other hand,

have improved the power of one of the tests summarized by Homm and Breitung by varying

the tests’ time interval. Particularly on processes including multiple bubbles with periodically

collapsing behavior the new test showed improvements in power.

This served as inspiration for the aim of this thesis. Specifically, the objective is to use a

similar trick and vary the time interval of two certain tests, namely the Bhargava statistic and

a Chow type unit root statistic named DFC, and compare and investigate their power to the

basic statistics as well as the statistic found by PSY (2012). This is done by testing the statistics’

rejection frequencies on different DGPs containing both, single and multiple bubbles.

The thesis is structured as follows: at first, section 2 will introduce the above stated test

statistics. Moreover, the variation of the time interval will be explained in detail. In section 3,

Monte Carlo Simulations will determine the tests’ critical values. Thereafter, five Bubble Gener-

ating Processes are illustrated and used to compute the power of the statistics. In section 4, the

tests are applied on real data. As test instances, the internet currency Bitcoin and Japan’s stock

Index Nikkei 225 are chosen. Lastly, section 5 will conclude and summarize the findings.

2 Test Statistics

As stated in the Introduction, Homm and Breitung (2011) have provided an overview of possible

test statistics in order to test for the presence of bubbles. All tests are grounded on the time-

varying autoregressive model of order one:

yt = ρt yt−1 +ǫt , (3)

where ǫt is a white noise with zero mean and variance equal to σ2. Furthermore, the initial

value of the series is y0 = c <∞. Due to simplification, a constant is omitted. The constant in a

stock price series, however, is insignificant anyways. If the reader might want to account for the

missing constant, the series can be detrended at first1. Note that the critical values provided in

section 3 will be misspecified then.

Under the null hypothesis, equation (3) is a pure random walk for all t . Hence,

H0 : ρt = 1 t = 1, ...,T. (4)

On the other hand, the alternative hypothesis states that yt starts as a random walk and

switches to an explosive process at time [τ∗T ] with τ∗ ∈ (0,1):

H1 : ρt =

{

1 t = 1, ..., [τ∗T ]

ρ∗ > 1 t = [τ∗T ]+1, ...,T.
(5)

1To detrend run the following OLS regression and use its residuals as yt in equation (3): yt =µ+αt .
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Contrary to the standard unit root tests, in which it is tested whether |ρ| < 1, this is a right-

tailed test. In other words, H0 is rejected for large statistic values. How to compute these statistic

values is being presented in the following subsections.

2.1 The SADF and GSADF Tests

The sup augmented Dickey-Fuller test (SADF), was introduced by Phillips, Wu and Yu (2011,

PWY). In order to obtain the SADF statistic it is necessary to first regress the augmented Dickey-

Fuller regression model:

∆yt =αr1,r2 +βr1,r2 yt−1 +

k
∑

i=1

ψi
r1,r2

∆yt−i +ǫt , (6)

in which ǫt is normally distributed with zero mean and variance σ2
r1,r2

and k2 represents the

lag order. The numbers r1 and r2 indicate the starting and end point of the regression in means

of fractions of the total sample. For instance, assume r1 = 0.2, r2 = 0.6 and the sample size is 100.

Then the regression would start at the 20th observation and will include the 60th observation

as its last one. The ratio of β̂ and its standard error yields the ADF
r2
r1

statistic. By fixing r1 = 0

and expanding r2 from r0
3 to 1, one gets a series of ADF statistics. The supreme of this series is

the SADF statistic. Mathematically speaking, the SADF statistic is denoted by supr2∈[r0,1] ADF
r2

0 .

Since the SADF statistic showed inconsistency in the presence of multiple bubbles, PSY

(2012) extended the statistic by additionally varying the starting point r1 from 0 to r2 − r0. This

trick implied a broader sample sequence and increased the power of the statistic significantly.

PSY called this statistic the General sup augmented Dickey-Fuller (GSADF) statistic. It can be

expressed as

GS ADF (r0) = sup
r2∈[r0,1]

r1∈[0,r2−r0]

{

ADF
r2
r1

}

. (7)

As outlined in the Introduction, this simple trick of increasing the power of a statistic led to

the attempt of applying it on other statistics as well. Therefore, I chose the Bhargava statistic

and the DFC statistic to be transformed similarly. How both statistics are computed is explained

in the upcoming subsections.

2the lag order k was set to 0 in all computations in this thesis.
3r0 represents the smallest possible sample size. In this thesis r0 is fixed to 0.10.
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2.2 The General Sup Bhargava Statistic

One of the statistics summarized by Homm and Breitung (2011) was the Bhargava statistic. They

modified the original statistic in order to be able to test for a change from an I(1) process to an

explosive one in the interval r1 ∈ [0,1−τ0]:

B
r2
r1
=

1

[Tr2]− [r1T ]

(

∑[Tr2]
t=[r1T ]+1

(yt − yt−1)2

∑[Tr2]
t=[r1T ]+1

(yt − y[r1T ])2

)−1

. (8)

In contrast to the SADF statistic, the sup Bhargava statistic is computed by fixing r2 = 1

and expanding r1 from 0 to 1 − r0. Mathematically, supB = supr1∈[0,1−r0] B 1
r1

. The reasoning

behind this statistic is that, based on the assumption of a random walk process, the sum of

squared forecast errors of this series become very large if the process shows explosive behavior.

Meaning, the statistic grows large if a bubble exists and the null of no bubble can be rejected.

Applying the interval varying method to the supB statistics means to loosen the fixed r2 and

not r1 as in the SADF case. This can be done in a feasible range, leading to a statistic that I call

the General sup Bhargava (GsupB) statistic:

GsupB(r0) = sup
r2∈[r0,1]

r1∈[0,r2−r0]

{

B
r2
r1

}

. (9)

The different interval methods of the supB and GsupB statistics are illustrated in Figure 1.

From the right hand side it becomes clear that the end point r2 moves. This fact enables the

possibility to test the statistic on intervals containing only the explosive growth of a bubble and

not its collapse. Hence, time series including bubble collapses or even multiple bubbles can be

approached in a way that is in line with the underlying hypotheses described in section 2.1.

2.3 The General Sup DFC Statistic

The second statistic is a Chow-type Dickey-Fuller statistic named DFC. As the name suggests,

the idea is to use a Chow test to check for a structural break in ρt . Let ρt = 1 for t = 1, ..., [r1T ]

and ρt −1 = δ> 0 for t = [r1T ]+1, ...,T . Then, the regression model is:

∆yt = δ(yt−11
{

t>[r1T ]
})+ǫt , (10)

with 1{

t>[r1T ]
} being an indicator function, which takes on the value 1 if the expression in

curly braces is true and 0 otherwise. To test for a structural break, one needs to test the null

hypothesis H0 : δ= 0, against the alternative H1 : δ> 0. The DFC statistic is nothing else than

the regression t-statistic of equation (10):
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Figure 1: Illustration of the supB, supDFC (left) and GsupB, GsupDFC (right) time intervals

DFC
r2
r1
=

∑[Tr2]
t=[r1T ]+1

∆yt yt−1

σ̃
√

∑[Tr2]
t=[r1T ]+1

y2
t−1

, (11)

where σ̃ is computed the following way:

σ̃2 =
1

[r2T ]−2

[Tr2]
∑

t=2

(

∆yt − δ̃yt−11
{

t>[r1T ]
}

)2
, (12)

and δ̃ is the least square estimator of δ in equation (10). The sup DFC test proposed by

Homm and Breitung (2011), sets r2 = 1 and varies r1 from 0 to 1−r0: supDFC= supr1∈[0,1−r0] DFC 1
r1

.

Again, additionally varying the end point, r2, leads to the General sup DFC (GsupDFC) statistic:

GsupDFC (τ0) = sup
r2∈[r0,1]

r1∈[0,r2−r0]

{

DFC
r2
r1

}

. (13)

Note that the intervals of computing the DFC statistic are exactly the same as in the previous

Bhargava case. Figure 1 serves as an illustration.
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3 Monte Carlo Simulations

In this section I will empirically investigate the power of all mentioned statistics on five differ-

ent bubble creating processes using Monte Carlo Simulations. At first, asymptotic and finite

sample critical values for each statistic are being computed. Afterwards, each subsection will

explain the underlying data generating process and describe the power results of each statistic.

All computations were implemented in Matlab.

3.1 Critical Values for Test Statistics

The critical values for all test statistics are presented in Table 1. The values are computed ac-

cording to equation (3) and the null hypothesis of equation (4). Therefore, the underlying test

process is a random walk. The parameter r0 was set to 0.10 in every statistic. All sup statistics

were computed by varying r2 (in the SADF case) and r1 (in the supB and supDFC case) by 0.01

steps. That means, a sup statistic computes the base statistic 90 times. On the other hand, the

general sup statistics compute their base statistic 4040 times. This is a significant increase and

resulted in a substantially longer computation time. Apart from the 0.95 and 0.99 asymptotic

critical values of both Bhargava statistics, each general sup critical value turned out to be higher

than its sup statistic. Furthermore, a bigger sample size led in all cases to a lower critical value.

In order to stress the importance of only applying the provided critical values on trend-less

processes, I simulated random walk with drift processes and computed the rejection frequen-

cies of all statistics using the critical values of Table 1. Since these processes do not contain

explosive growth, the rejection frequencies should equal 0.05 with correctly specified critical

values. The in Table 2 summarized findings show that if the underlying process contains a small

drift term, some of the statistics seem to be only slightly oversized. If, however, the drift term

appears to be larger, no statistic is able to distinguish the drift term from a bubble. Wrong in-

ference would be drawn from the researcher.

In every following power computation, the critical values corresponding to the right sample

size were used. Moreover, the power of all tests is evaluated at a nominal size of 5%.

3.2 DGP under a fixed explosive Process

The simplest form of modeling explosive behavior is to switch at some point [τ∗T ] from a ran-

dom walk process to an explosive one with ρ∗ > 1. Using 2000 replications, the power of all

statistics was evaluated for different values of τ∗ and ρ∗ of equations (3) and (5). An example

series for τ = 0.70 and ρ = 1.03 is presented in Figure 2. Shortly after the 0.70∗ 200 = 140th

observation, it can be observed that the series shows a tendency to grow.

All power results are reported in Table 3. This Table also contains two rows called ’Actual
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Table 1: Upper tail critical values for test statistics

Test statistics

Quantile supB GsupB supDFC GsupDFC supADF GsupADF

a) Asymptotic critical values

0.90 2.89 2.95 1.48 2.95 1.00 1.49

0.95 3.37 3.12 1.86 3.19 1.27 1.77

0.99 4.52 3.69 2.53 3.70 1.82 2.23

b) Finite sample critical values T = 200

0.90 2.96 3.86 1.46 3.20 1.05 1.75

0.95 3.58 4.49 1.84 3.48 1.38 2.01

0.99 4.84 5.60 2.71 4.03 1.91 2.70

c) Finite sample critical values T = 100

0.90 3.19 4.00 1.60 3.35 1.10 1.48

0.95 3.77 4.54 1.94 3.68 1.37 2.36

0.99 4.86 5.97 2.57 4.34 2.06 3.54

The critical values were computed by simulating 2000 random walk processes with y0 = 15 and gaussian

white noise. The sample size of the asymptotic critical values was set to 2000.

size’. The numbers in these rows are the rejection frequencies of falsely rejecting the null of no

bubble. At a nominal size of 5%, all values in both rows should equal 0.05. It can be seen that

indeed, all numbers are around 0.05. Only the supDFC statistic seems to be sightly oversized

with 7%. This might be an indication for having found critical values, which are too low. Now

let us turn to the power results of the test statistics. All results have three things in common:

As expected an increase in ρ leads to a higher rejection frequency; An earlier break point τ∗

implies a higher power and lastly, a bigger sample size has a positive impact on the power of a

statistic as well. All in all, the supDFC statistic performs best in each setting. Furthermore, it

becomes apparent that only the GsupADF statistic outperforms its sup counterpart in terms of

rejection frequencies. On the other hand, the GsupB and the GsupDFC statistic show weaker

results than their sup statistics. Therefore, in order to test for explosive growth in time series that

show similar patterns to the one on hand, it can be recommended to use one of the simpler sup

statistics or in particular, the supDFC statistic.
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Figure 2: Random walk with τ= 0.70 and ρ = 1.03

Table 2: Rejection Frequencies on a random walk with drift Process

Test statistics

drift supB GsupB supDFC GsupDFC supADF GsupADF

a) T = 100

0.02 0.05 0.06 0.05 0.05 0.06 0.07

0.05 0.05 0.06 0.07 0.06 0.07 0.05

0.10 0.10 0.09 0.12 0.08 0.09 0.06

0.25 0.44 0.38 0.52 0.32 0.19 0.13

0.50 0.96 0.95 0.98 0.89 0.40 0.39

b) T = 200

0.02 0.05 0.04 0.06 0.04 0.04 0.06

0.05 0.07 0.06 0.10 0.06 0.05 0.06

0.10 0.19 0.13 0.21 0.14 0.09 0.10

0.25 0.78 0.71 0.85 0.62 0.26 0.27

0.50 1.00 1.00 1.00 1.00 0.40 0.63

The underlying process is a random walk with drift: yt = dr i f t + yt−1 +ǫt , where ǫt is standard

normally distributed and y0 = 0. At a nominal level of 5%, all entries should equal 0.05. A growing drift

term is leading to higher rejection frequencies of the statistics. The number of replications is 2000.
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Table 3: Empirical power for fixed τ∗ and ρ∗

Test statistics

Break point Magnitude supB GsupB supDFC GsupDFC supADF GsupADF

a) Power for T = 100

Actual size 0.06 0.05 0.07 0.06 0.05 0.05

τ∗ = 0.7 ρ∗ = 1.02 0.34 0.27 0.61 0.35 0.31 0.28

ρ∗ = 1.03 0.58 0.50 0.79 0.62 0.57 0.58

ρ∗ = 1.04 0.75 0.67 0.88 0.78 0.75 0.76

ρ∗ = 1.05 0.81 0.75 0.93 0.88 0.83 0.87

τ∗ = 0.8 ρ∗ = 1.02 0.20 0.15 0.49 0.23 0.17 0.16

ρ∗ = 1.03 0.32 0.23 0.68 0.42 0.33 0.36

ρ∗ = 1.04 0.56 0.36 0.77 0.60 0.53 0.56

ρ∗ = 1.05 0.60 0.44 0.86 0.72 0.63 0.71

b) Power for T = 200

Actual size 0.05 0.04 0.07 0.06 0.05 0.05

τ∗ = 0.7 ρ∗ = 1.02 0.69 0.62 0.79 0.69 0.63 0.67

ρ∗ = 1.03 0.85 0.82 0.90 0.86 0.82 0.84

ρ∗ = 1.04 0.92 0.91 0.95 0.92 0.90 0.93

ρ∗ = 1.05 0.95 0.94 0.97 0.96 0.95 0.97

τ∗ = 0.8 ρ∗ = 1.02 0.48 0.42 0.69 0.50 0.41 0.48

ρ∗ = 1.03 0.70 0.63 0.82 0.72 0.66 0.70

ρ∗ = 1.04 0.81 0.77 0.89 0.83 0.77 0.83

ρ∗ = 1.05 0.87 0.82 0.94 0.89 0.85 0.90

The DPG is based on equations (3) and (5). The number of replications is 2000. The rows ’Actual size’

indicate the size of the tests at a nominal size of 5%.
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3.3 DGP under randomly starting Bubbles

After having observed the results of explosive growth processes that were fixed in nature, the

next step is to evaluate the power of the statistics on randomly starting bubbles. In order to

simulate the series Pt = P
f
t +Bt one first needs to generate the market fundamental P

f
t . Homm

and Breitung (2011) determine this quantity as follows:

P
f
t =

1+ r f

r 2
f

µ+
1

r f

D t , (14)

where the dividends D t are generated by a random walk with drift µ and white noise ut

D t =µ+D t−1 +ut . (15)

In equation (14), r f denotes the risk-free interest rate and µ is the same number as in equa-

tion (15). The randomly starting bubble component Bt is given by

Bt =

{

Bt−1 +
r f Bt−1

π
θt , if Bt−1 = B0

(1+ r f )Bt−1, if Bt−1 > B0.
(16)

In this bubble process θt is an iid Bernoulli process that takes on the value 1 with probability

π and 0 with 1−π. The parameter π can be seen as the probability that the bubble starts to grow

exponentially and B0 indicates the initial value of the bubbles. This value needs to be strictly

positive, otherwise negative bubbles are generated (B0 < 0), which would lead to negative prices

or no bubble is generated at all (B0 = 0).

In this thesis, I follow Evans (1991) to determine the parameters of the equations. Equation

(15) is simulated using µ = 0.0375, D0 = 1.30 and a normally distributed noise with zero mean

and variance σ2 = 0.1574. Furthermore, the interest rate r f = 0.05. The only parameters that are

varied are the probability of a bubble to grow exponentially π and the initial bubble value B0.

Figure 3 shows four processes for different values of π and B0. The bottom right graph indicates

that a higher initial bubble value leads to a stronger growth in the series. The other three graphs

show patterns of a random starting point of explosive growth.

The power results, summarized in Table 4, reveal two clear relationships: Firstly, as expected

a higher value for B0 leads to higher rejection frequencies and secondly, including more

sample observations has an even bigger effect on the power of the statistics. For 200 sample

observations, almost every statistic has a power close to 1. As in the previous data generating

process, the supDFC statistic provides best rejection frequencies for all settings and again, the

general sup statistics perform slightly worse on average. The same results are not surprising

since the data generating process is quite similar to the previous one. As its name suggests, the

main difference to the previous process lies in the random starting behavior of the bubble.
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Table 4: Empirical power for randomly starting bubbles

Test statistics

Initial value π supB GsupB supDFC GsupDFC supADF GsupADF

a) Power for T = 100

B0 = 0.10 0.02 0.49 0.42 0.79 0.50 0.28 0.19

0.10 0.49 0.44 0.82 0.48 0.27 0.20

0.50 0.50 0.39 0.82 0.49 0.26 0.18

1.00 0.52 0.43 0.83 0.46 0.27 0.19

B0 = 2 0.02 0.82 0.81 0.94 0.84 0.75 0.75

0.10 0.99 0.98 0.99 0.99 0.98 0.98

0.50 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00

b) Power for T = 200

B0 = 0.10 0.02 0.97 0.95 0.99 0.96 0.88 0.93

0.10 0.99 0.99 1.00 1.00 1.00 1.00

0.50 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00

B0 = 2 0.02 0.99 0.98 0.99 0.98 0.97 0.99

0.10 1.00 1.00 1.00 1.00 1.00 1.00

0.50 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00

The data was generated according to Pt = P
f
t +Bt where P

f
t is given by (14) and (15) and Bt by (16). The

number of replications is 2000.
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Figure 3: Randomly starting Processes for different π and B0 = 0.10; Bottom right with B0 = 2

3.4 DGP under a periodically collapsing Process

Contrary to the two previous DGPs, the following processes deal with the possibility of the pres-

ence of multiple bubbles. In these DGPs it is not only possible for a bubble to burst, but also

to evolve again. PSY (2012) have shown that the supADF statistic has low power in detecting

multiple bubbles and they have empirically proven that the GsupADF test is superior on these

instances. It will be interesting to see if the other general sup statistics improve the power of

the statistics as well. The first multiple bubbles DGP to investigate is the periodically collapsing

process. Evans (1991) has created the following periodically collapsing bubble model. The asset

price is being computed similarly to the previous case: Pt = P
f
t +κBt with κ> 0, where the mar-

ket fundamental P
f
t is generated according to equations (14) and (15). The bubble component

Bt , however, is simulated differently:

Bt+1 =

{

(1+ r f )BtǫB ,t+1 if Bt < b
[

ζ+π−1(1+ r f )θt+1(Bt − (1+ r f )−1ζ)
]

ǫB ,t+1, otherwise.
(17)

Here, the notation needs to be explained in detail. The error term ǫB ,t = exp(yt −τ2/2) with

yt being N I D(0,τ2). While Bt is less than a constant b, Bt follows the submartingale property

of (2) and grows at the rate (1+ r f ). If Bt is bigger than b, it grows even faster at rate π−1(1+ r f )

but might collapse with probability 1−π. After the bubble has collapsed, the quantity ζ equals

the re- initializing value. θt is similarly defined as in the previous case, it is still a Bernoulli
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Table 5: Parameters

µ σ2 of ut D0 r f b B0 π ζ τ κ

0.0373 0.1574 1.3 0.05 1 0.5 see Table 6 0.50 0.05 20

process that equals 1 with probability π and 0 otherwise. Figure 4 illustrates the behavior of Pt

for different values of π. Since π represents the probability of the bubble to continue growing,

we can expect longer and higher bubbles to evolve for larger values of π. This expectation is met

by observing Figure 4. For instance, it can be seen that for π = 0.99 the bubbles take longer to

eventually collapse and grow higher than for e.g π= 0.20, as in the top left graph. The presence

of multiple bubbles can be witnessed, as well.

In order to simulate this periodically collapsing process all parameters have to be set first.

Evans (2011) provided settings that I follow. Table 5 summarizes the parameter settings used to

generate the data. The only parameter to vary is π. All power results are reported in Table 6. Un-

der this periodically collapsing process, there are two commonalities. Firstly, as π increases, the

power of all statistics tend to increase as well and secondly, contrary to the previous cases an in-

crease in the sample size does not lead to higher rejection frequencies. In most cases, additional

sample observations seem to have a negative impact on the power results of the statistics. One

statistic particularly stands out with its results: the supDFC statistic. While the subDFC statistic

performed best on single bubble DGPs, on this specific multiple bubble generating process it

shows severe weakness to detect a bubble. The highest rejection frequencies in this setting have

the GsupB statistic for low values of π and the GsupADF statistic for higher values of π. All in all

the GsupB and GsupDFC statistics performed significantly better than their sup statistics and

the GsupADF statistic has higher power than its sup part on most instances, as well.

3.5 DGP under the Near-Explosive Random Coefficient autoregressive model

The Near-Explosive Random Coefficient (NERC(p)) autoregressive model belongs to the class

of random-coefficient autoregressive models, in which p denotes the number of lagged depen-

dent variables. In this DGP I follow Banerjee, Chevillon and Kratz (2013) and implement the

following NERC(1) model:

yt = ρt yt−1 +ηt , (18)

where ηt is an independent standard Gaussian white noise and ρt is a nonnegative covari-

ance stationary process, independent of ηt . Furthermore, ρt is determined by:
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Figure 4: Periodically collapsing Processes for different values of π

Table 6: Empirical power for periodically collapsing bubbles

Test statistics

π supB GsupB supDFC GsupDFC supADF GsupADF

a) Power for T = 100

0.20 0.36 0.57 0.10 0.50 0.46 0.41

0.35 0.41 0.54 0.07 0.57 0.62 0.61

0.50 0.49 0.61 0.08 0.62 0.69 0.77

0.99 0.92 0.99 0.62 0.99 0.98 0.99

b) Power for T = 200

0.20 0.26 0.48 0.08 0.47 0.37 0.40

0.35 0.21 0.53 0.06 0.51 0.45 0.61

0.50 0.25 0.57 0.04 0.67 0.57 0.76

0.99 0.80 0.99 0.43 0.99 0.99 1.00

The data is generated according to Pt = P
f
t +Bt , where P

f
t is given by (14) and (15) and Bt by (17). The

parameter π is the probability of a bubble to continue growing. The number of replications is 2000.
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Figure 5: NERC(1) Processes for different values of (φ,λ) using equations (18) and (19)

ρt = exp((φ+λT α/2ut )/T α) (19)

with φ belonging to the set of real numbers, λ belonging to the set of positive real numbers

and α ∈ (0,1). Moreover, ut is a standard normally distributed variable, independent of ηt and

T equals the number of observations in the sample.

The characteristics of the resulting series of this DGP highly depend on the value c =φ+λ2.

When (c < 0), the series will be weakly stationary. On the other hand, if (c ≥ 0), the process

is not weakly stationary and will develop either processes which are stationary with fat tails or

non stationary with explosive growth when (λ 6= 0) . At some point, these bubbles will burst and

might occur consecutively. The effects of varying φ and λ, so the impact of c on the series can be

observed in Figure 5. The top left graph is generated by a value of (c < 0), and is supposed to be

weakly stationary. Indeed, on the first sight mean and variance seem to be stable. All remaining

graphs have (c > 0) in common. Each of which show signs of explosive growth.

In order to test the power of the statistics I decided to generate processes that are either sta-

tionary or explosive. In Table 7, the first two processes are supposed to be weakly stationary (c <

0), while the remaining three should generate bubbles. Note that the setting (φ,λ) = (0.5,0.0) is

an exponential function. Clearly, in this setting, all statistics were able to detect the exponential

growth. On the weakly stationary processes, no statistic rejected the null of no bubble more

often than 5%, which indicates that the statistics are slightly undersized. Turning to the last two

processes, one issue stands out. Both Bhargava statistics were not able to detect a bubble in

the setting (0.5, 0,5) at all. Furthermore, also under (0.5, 1.0) the Bhargava statistics revealed
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Table 7: Empirical power for the NERC(1)

Test statistics

(φ,λ) supB GsupB supDFC GsupDFC supADF GsupADF

a) Power for T = 100

(-0.2 , 0.0 ) 0.03 0.04 0.01 0.02 0.05 0.05

(-0.2 , 0.1 ) 0.02 0.04 0.01 0.02 0.04 0.05

(0.5 , 0.0) 1.00 1.00 1.00 1.00 1.00 1.00

(0.5 , 0.5) 0.01 0.01 0.50 0.97 0.97 0.94

(0.5 , 1.0) 0.09 0.13 0.22 0.92 0.89 0.91

b) Power for T = 200

(-0.2 , 0.0 ) 0.01 0.01 0.00 0.01 0.02 0.03

(-0.2 , 0.1 ) 0.01 0.02 0.01 0.01 0.03 0.04

(0.5 , 0.0) 1.00 1.00 1.00 1.00 1.00 1.00

(0.5 , 0.5) 0.00 0.00 0.61 0.99 0.99 0.98

(0.5 , 1.0) 0.05 0.09 0.23 0.95 0.95 0.96

The data are generated using equations (18) and (19), whereby α= 0.50 and y1 = 10. Simulations are

repeated 2000 times.

weakness in rejecting the null hypothesis. Considering the DFC statistics, the GsupDFC outper-

formed its sup statistic significantly while the ADF statistics have more or less similar results.

Concerning all outcomes, the GsupDFC statistic is a decent statistic to use if the underlying

process shows patterns similar to the NERC(1) process on hand.

3.6 DGP under a Noncausal Cauchy linear autoregressive Process

In the past few years, researchers have recognized that it is not only possible to model a series

by a standard ARMA model but also by so called noncausal autoregressive models. Contrary

to ARMA models, in which current values are explained by previous values, noncausal mod-

els make use of forward looking values. Gourieroux and Zakoian (2013) have investigated the

modeling of bubbles using the following noncausal process:

yt = ρyt+1 +ǫt , (20)

with |ρ| < 1 and ǫt being a strong white noise. The strong white noise is generated by draw-

ing randomly from a Student’s t distribution with one degree of freedom. This yields a Cauchy

distribution- a distribution with fat tails. The higher possibility of more extrem values in the

error term is responsible for the creation of bubbles. Consecutive bubbles are possible as well.
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Figure 6: Noncausal Processes for different values of ρ using equation (20)

Figure 6 illustrates the behavior of the series for different values of ρ. All series are generated

backwards. In other words, I fixed yT = 50 and generated all other yt recursively. Values of ρ

close to 0 let the bubbles appear to be shorter in their evolution and rather steep. On the other

hand, when ρ→ 1, the length of a bubble increases.

This noncausal cauchy linear autoregressive process is different to the preceding DGPs. All

processes so far fulfilled the requirement of the null hypothesis. The DGPs have all been non-

stationary and changed to an explosive process. In this DGP, however, the series is stationary

rather than a random walk and includes bubbles as it progresses. The statistics in this thesis

are all based on the assumptions of the H0 and H1 described in the beginning of Section 2 and

therefore Gourieroux and Zakoian (2013) argued that unit root based statistics lead to wrong

results and other specified tests should be used to test noncausal processes instead.

Although Gourieroux and Zakoian suggested to use other statistics to test for bubbles in

noncausal models, I investigated the power of the statistics and summarized the results in Ta-

ble 8. The parameter to vary was ρ. Interestingly, an increase in ρ does not really lead to a

higher power of the statistics 4. Conversely, higher powers are achieved when ρ is either 0.50

or 0.70. Furthermore, in this underlying model all general sup statistics are superior to their

sup statistics. All in all, the GsupADF statistics serves as the best detector for bubbles. Only

in the ρ = 0.10 setting, the GsupB and GsupDFC statistics have a higher rejection frequency.

Whether the power results are trustworthy or not is a question for a different paper. It can be

4Only for the Bhargava statistics it does.
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Table 8: Empirical power for the Noncausal Model

Test statistics

ρ supB GsupB supDFC GsupDFC supADF GsupADF

a) Power for T = 100

0.10 0.29 0.64 0.18 0.67 0.30 0.61

0.50 0.37 0.73 0.37 0.80 0.62 0.96

0.70 0.47 0.74 0.31 0.76 0.65 0.96

0.90 0.61 0.82 0.14 0.63 0.54 0.85

b) Power for T = 200

0.10 0.22 0.61 0.03 0.54 0.19 0.43

0.50 0.27 0.68 0.13 0.76 0.54 0.90

0.70 0.28 0.72 0.13 0.76 0.64 0.95

0.90 0.35 0.76 0.03 0.64 0.61 0.90

The Data was generated using equation (20), and repeated 2000 times.

concluded, however, that the noncausal model definitely generates bubbles in all instances and

that the GsupADF statistic, for instance, is able to reject the null of no bubble in over 90% for

some parameter settings of ρ.

4 Application

After having computed the power of the statistics on different bubble generating processes, this

section will apply the test statistics on real data. As test instances, the Internet currency Bitcoin

and Japan’s main stock index Nikkei 225 are chosen.

4.1 The Bitcoin Bubble

Bitcoin is an Internet currency invented by Satoshi Nakamoto in 2008 (Nakamoto, 2008). Until

today, the identity of Nakamoto is completely unknown. Nakamoto might be a single person

or consist of a group of programmers. The online currency can be used to pay for products

and services or can be exchanged into real currencies. The advantages of Bitcoins range from

anonymous payments to transaction- free and fast transfers. On the other hand, critics claim

that unlike, for example, the U.S. Dollar Bitcoins are not backed by a central bank like the Fed-

eral Reserve System. Furthermore, due to its anonymity Bitcoin serves as a perfect currency

for criminal activities and its decentralized character without any regulations leads to a signifi-
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Table 9: Results of Test Statistics under the Bitcoin series

Test statistics

supB GsupB supDFC GsupDFC supADF GsupADF

Results 2.36 2.36 0.03 5.43 6.47 6.47

a) Asymptotic critical values

90 % 2.89 2.95 1.48 2.95 1.00 1.49

95 % 3.37 3.12 1.86 3.19 1.27 1.77

99 % 4.52 3.69 2.53 3.70 1.82 2.23

The supADF and GsupADF statistics are computed by including 4 lags

cantly higher volatility compared to the U.S. Dollar5 (Williams, 2014). The volatility reached its

peak when the currency jumped from a price of 15$ in January 2013 to prices of over 1000$ in

November the same year. This surge in the asset price can be observed in Figure 7. The chart

reveals the presence of a bubble starting at approximately the 100th sample observation and a

burst at around 50 observations later. The underlying data was downloaded from Datastream

and one observation equals one trading day. Moreover, the time horizon covers the past two

years. By comparing this graph to the processes generated in section 3, it can be seen that the

first two DGPs have nothing in common with the Bitcoin series due to the fact that both DGPs

do not contain bubble bursts. Furthermore, the periodically collapsing process seems to be dif-

ferent in nature as well and the noncausal model DGP does not fit with its stationary character

either. Hence, the only process that could possibly generate a series similar to the one on hand

is the NERC(1) process. Note that the graphs illustrated in Figure 5 are only representatives for

four different parameter combinations.

Before applying the test statistics on the series, I conducted two tests in order to guarantee

trustworthy results. As outlined in section 3.1, the test series needs to be trend-less so that

the provided critical can be used. A simple regression confirmed the insignificance of a linear

trend and a constant. Furthermore, to ensure that the residuals are not serially correlated, the

Schwarz Information Criterion determined the lag length of the ADF statistics to be 4. The

application of all test statistics on this time series yielded the results in Table 9. Since the series

contains more than 500 sample observations the asymptotic critical values are chosen in order

to determine a rejection of the null hypothesis. The null hypothesis is not rejected at the 90

% threshold by both Bhargava statistics. Apparently, the variation of the interval has not led

to a higher sup value in the GsupB statistic. Interesting results show the Chow type statistics

DFC. While the supDFC statistic is far from rejecting the null hypothesis, the GsupDFC statistic

5In fact Bitcoin’s volatility is 18 times higher than the U.S. Dollar.
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Figure 7: Exchange rate of Bitcoin - USD from May 2013 to May 2015

detected a bubble at the 99 % quantile. Lastly, both ADF statistics reject the null hypothesis at

the 99 % quantile, as well. Therefore, considering all statistics together three statistics suggest

to accept the null hypothesis while the other three reject it. Due to the fact, however, that the

series is rather similar to a NERC(1) process it can be concluded that more emphasis should be

based on the decision of the GsupDFC, supADF and GsupADF statistics, since these statistics

showed highest rejection frequencies on NERC(1) instances. Hence, the Bitcoin series is most

likely subject to the presence of a bubble.

4.2 Japan’s Bubble in the 1980s

The second test instance I chose deals with an incident that still impacts Japan’s economy signif-

icantly. After world war two, Japan’s economy experienced around 30 years of extreme growth.

Thanks to the Marshall Plan, an improved relationship to the United States of America and their

conglomerate businesses called ’keiretsu’ it was possible for Japan to become one of the biggest

exporters of manufactured products such as cars and electronic gadgets. The cash surplus re-

sulting from the exports together with an appreciation of the Yen against the U.S. Dollar enabled

Japan to invest in and acquire foreign firms so that it became the second largest economy in the

world. This fact, financial deregulation and a lose monetary policy led to overconfidence, which

yielded in soaring stock and real estate prices (Colombo, 2012). At its peak, the land beneath

the Tokyo Imperial Palace was estimated to be worth as much as the state of California (Impoco,

2008) and Japan’s main stock Index, the Nikkei 225, tripled within four years to 39000 points in

1989. Ever since the bubble collapsed to 20000 points in 1990, Japan found itself in a phase

of deflation and interest rates close to zero. Up until today, no intervention6 of Japan’s central

6Meaning quantitative easing and Yen depreciation.
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Table 10: Results of Test Statistics under the Nikkei 225 series

Test statistics

supB GsupB supDFC GsupDFC supADF GsupADF

Results 1.80 3.84 0.47 5.75 4.98 4.98

a) Asymptotic critical values

90 % 2.89 2.95 1.48 2.95 1.00 1.49

95 % 3.37 3.12 1.86 3.19 1.27 1.77

99 % 4.52 3.69 2.53 3.70 1.82 2.23

The supADF and GsupADF statistics are computed by including 0 lags

bank could change these facts.

The instance to test is Japan’s stock Index, the Nikkei 225 Index. The chart of this index

is drawn in Figure 8 and covers the time between 1980 and 2000. The data are plotted weekly,

meaning one sample observation equals Nikkei’s weekly price and are downloaded from Datas-

tream. Moreover, the underlying currency is Yen. Contrary to the Bitcoin, the Nikkei 225 Index

increased over a longer period and not as steep. After the bubble collapsed at approximately the

500th observation , it followed three years of depreciation up until around the 630th observa-

tion. Ever since, the series shows stationary patterns. Possibly, a similar series can be generated

by a NERC(1) or a noncausal model7.

In order to test the Nikkei Index, the same specification tests needed to be conducted in

advance. Again, a regression revealed insignificant coefficients for a constant and a linear trend.

Moreover, no lags were needed to compensate for serial correlation. Testing the Nikkei 225

Index yielded the results reported in Table 10. In this series there is a difference in the values

of the Bhargava statistics. On the one hand, the supB statistic does not detect a bubble while

on the other hand, the general sup Bhargava statistic rejects the null hypothesis at the 99 %

quantile. A bigger improvement shows the GsupDFC statistic compared to its supDFC statistic.

Again, the supDFC statistic is not able to detect the presence of a bubble at all and the GsupDFC

statistic rejects the null hypothesis at the 99 % threshold. Lastly, both ADF statistics show strong

evidence of the presence of a bubble by rejecting the null hypothesis at the 99 % quantile, as

well. Altogether, the results are similar to previous ones: The GsupDFC and the ADF statistics

clearly rejected the null hyphosesis; The GsupB improved compared to the Bitcoin series and

the subB and particularly the supDFC statistics turned out to be weak detectors for bubbles that

burst. This conclusion suggests the presence of a bubble in the Nikkei Index in the time interval

of 1980 until 2000.

7The noncausal model would imply an even bigger collapse, though.
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Figure 8: Nikkei 225 Index from 1980 to 2000

5 Conclusion

This thesis is about testing for the presence of bubbles in time series. For this purpose, two new

statistics are introduced, namely the general sup Bhargava and the general sup DFC statistics.

Both statistics were derived by additionally varying the time interval of their sup statistics. This

trick was used by PSY to create the general sup ADF statistic from the sup ADF statistic. The

power of all statistics was computed on several bubble generating processes. While the sup

statistics proved to be more efficient in detecting bubbles that do not burst, a different picture

was drawn when inspecting the rejection frequencies on DGPs that contain multiple bubbles.

Under the latter case, the GsupDFC and the GsupADF statistics performed best and are hence

advised to use for application. To confirm the results, the internet currency Bitcoin and the

Japanese stock Index Nikkei 225 were tested for the presence of bubbles. It turned out, that

especially the GsupADF and the GsupDFC statistics reject the null hypothesis of no bubble at

the 99 % quantile in both instances.

All in all, it can be concluded that even though there exist several econometric tests that can

be used to detect a bubble in a time series, it is uncertain whether any policy maker would in-

tervene if an asset prices is positively tested for the presence of a bubble. In the worst case they

behave like Alan Greenspan, the former Federal Reserve Chairman, who said after the Dotcom

Bubble in 2002:

’As events evolved, we recognized that, despite our suspicions, it was very difficult

to definitively identify a bubble until after the fact - that is, when its bursting con-

firmed its existence.’
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