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Abstract

This thesis is based on the paper ‘Quantile credibility models’ by Georgios Pit-
selis, which was published in 2013. It introduces credibility theory and shows how
quantiles can be incorporated in the Bühlmann-Straub model and the Hachemeis-
ter’s regression model. For each model, a numeric example is presented.

1 Introduction

Insurance contracts must be familiar to most people, but it is little known how premiums
are estimated. The modern credibility1 theory estimates an insured’s pure risk premium
by striking a balance between the individual’s average claims and the overall mean of the
claim data. Below is an illustration of this premium estimation technique.
It is well known that an insurance company insures many kinds of risks. These risks are
grouped into ‘similar risks’, called the collective, on the basis of ‘objective’ risk charac-
teristics [1]. Examples of such risk characteristics are age and sex. Based on the observed
data and statistical information, the structure of the collectives could be determined.
When setting a premium for a new risk, about which there is no pre-existing claim ex-
perience, one could estimate it by the overall mean of the claim data X, i.e. the average
claim amount over all risk collectives. After a period of n years, the aggregate claim
amounts observed could contribute to the estimation process. Then the premium for this
risk could be estimated by a combination of X and the individual average claims, i.e. Xj,
the structure is as follows:

zjX̄j + (1− zj)X̄.

A premium such as this is called a credibility premium, zj is the credibility factor, ex-
pressing how much faith you can have in the individual average claims. [2].
Bühlmann introduced the balanced Bühlmann model in 1967 and together with Straub
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introduced the Bühlmann-Straub model in 1970 which established the theoretical founda-
tion of modern credibility theory. Hachemeister extended these models in Hachemeister’s
regression model by using linear trend model. In 2013, Georgios Pitselis published a paper
illustrating links between credibility theory and quantiles. This improves the premium
estimation technique as claim distributions are in general heavy-tailed, and quantile cred-
ibility regression detects information about the tail behaviour of claim distributions.
This paper aims to introduce the Bühlmann-Straub model, the Quantile credibility model,
Hachemeister’s regression model and the Quantile regression credibility model. The rest
of the paper is organized as follows. Section 2 covers the concept of quantiles and con-
ditional quantiles. Section 3 discusses quantile regression and its estimation method.
The Bühlmann-Straub model will be introduced in section 4, as well as how quantiles
are incorporated into this model. Hachemeisters’s regression model will be introduced
in section 5, as well as how quantiles are incorporated in this model. Section 6 discusses
the effect of outliers on these models. Finally, Section 7 draws conclusions.

2 Quantiles and Conditional Quantiles

2.1 Definition

Let Y be a random variable with the distribution FY and p be a real number between 0
and 1, i.e. 0 < p < 1. Then the p-quantile ξp is defined as follows:

ξp = F−1
Y (p) = inf{y : FY (y) ≥ p}.

As the payment could take any value of some entire multiple of the monetary unit, which
results in a very large set of possible values, each of them with a very small probability,
a continuous CDF for FY is more appropriate here. Then the p-quantile of FY can be
obtained by minimizing the following objective function with respect to ξp:

p

∫
y≥ξp
|y − ξp| dFY (y) + (1− p)

∫
y<ξp

|y − ξp| dFY (y)

= p

∫
y≥ξp

(y − ξp) dFY (y)− (1− p)
∫
y<ξp

(y − ξp) dFY (y).

(1)

Take the derivative of equation (1) w.r.t. ξp:

− p
∫
y≥ξp

dFY (y) + (1− p)
∫
y<ξp

dFY (y)

= −p[1− FY (ξp)] + (1− p)FY (ξp)

= −p+ FY (ξp)
set
= 0.

The second derivative = fY (y) ≥ 0, which implies that ξp = F−1
Y (p) indeed minimizes

the objective function mentioned above.
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Similarly, in case that Y has a conditional distribution FY |X , the p-quantile is defined as
follows:

ξp = F−1
Y |X(p) = inf{y : FY |X(y) ≥ p}.

ξp is a function of X and minimizes the following objective function:

p

∫
y≥ξp
|y − ξp| dFY |X(y) + (1− p)

∫
y<ξp

|y − ξp| dFY |X(y). (2)

2.2 Empirical Quantile Function

Let Y1, Y2, ..., Yn denote the order statistics of X1, X2, ..., Xn, and let ξ̂p denote the sample
p-quantile. Assume that the order statistics Y1, Y2, ..., Yn partition the support of X into
n parts and thereby create n equalling areas under f(x) and above the X-axis, see figure

1, then each area is on average:
1

n
.

Figure 1: Sample Quantiles

According to the definition, p is the area under f(x) to the left of ξp. If np is an
integer, Yj(1 ≤ j ≤ n) serves as an estimator of ξp, namely:

ξ̂p = Yj, if p =
j

n
.

In case j − 1 < np < j, the empirical quantile function can be defined as:

ξ̂p = Yj−1 + {np− (j − 1)}(Yj − Yj−1)

= (j − np)Yj−1 + {np− (j − 1)Yj}.

In summary, ∀ integer-valued j ∈ [1, n],

ξ̂p =

{
Yj if np = j;

(j − np)Yj−1 + {np− (j − 1)Yj} if j − 1 < np < j.
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2.3 Confidence Interval

This subsection shows how confident that ξp is contained in the interval, say (Yj, Yk).
Simply, it is to calculate P (Yj < ξp < Yk). Let N denotes the number of Xi which is
smaller than ξp, then N is a binomial random variable with n mutually independent trials
and with probability of success p = P (Xi < ξp). To ensure that ξp is sandwiched by Yj
and Yk, the order of Yj must be less than ξp, and the order of Yk greater than ξp, meaning
there are at least j Xis to the left of ξj and at most (k-1) Xis to the right of ξj, then
j ≤ N ≤ k − 1. It immediately follows that:

P (Yj < ξp < Yk) =
k−1∑
i=j

P (N = i) =
k−1∑
i=j

(
n

i

)
(p)i(1− p)n−i.

3 Quantile Regression

3.1 Classical Multiple Linear Regression Model

To analyse the behaviour of a dependent variable, given a set of explanatory variables,
a standard approach is to use multiple linear regression and estimate the parameters by
minimizing the sum of squared residuals, which leads to an approximation to the mean
function of the conditional distribution of the dependent variable. Below is an illustration
of this method.
The form of this regression model for a single observation is as follows:

yi = β1 + xi2β2 + · · ·+ xiKβK + εi .

If stack all n observations:

Y︸︷︷︸
n × 1

= X︸︷︷︸
n×K

β︸︷︷︸
K×1

+ ε︸︷︷︸
n×1

,

where

Y =

y1
...
yn

 , ε =

ε1...
εn

 , β =

β1
...
βK

 , X =


1 x′1
1 x′2
...

...
1 x′n

 =


1 x12 x13 · · · x1K

1 x22 x23 · · · x2K
...

...
...

. . .
...

1 xn2 xn3 · · · xnK


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Y : vector of dependent variables, n observations;

X : matrix of k explanatory variables of n observations, with k ≤ n;

β : vector of k unknown parameters;

εi : assumed to be iid, with E[εi|X] = 0, and Cov[εi, εj|X] = 0, V ar[εi|X] = σ2, let

Σ =

 ε21|X ε1ε2|X · · · ε1εn|X
ε2ε1|X ε22|X · · · ε2εn|X
εnε1|X εnε2|X · · · ε2n|X

 , then Σ =

σ2 0 · · · 0
0 σ2 · · · 0
0 0 · · · σ2

 ;

the population regression is : E[Y |X] = Xβ;

the estimate of E[Y |X] : Ŷ = Xβ̂;

the residual : e = Y − Ŷ = Y −Xβ̂;

the sum of squared residuals :
n∑
i=1

e′e =
n∑
i=1

(Y −Xβ̂)′(Y −Xβ̂).

The estimated coefficients are calculated as follows:

β̂ = (X ′X)−1(X ′Y ),

with Σβ̂ = σ2(X ′X)−1.

When the assumption V ar[εi|X] = σ2 is violated, meaning the value of σ2
i may differ

from each other, namely:

Σ =

σ2
1 0 · · · 0

0 σ2
2 · · · 0

0 0 · · · σ2
n

 .

the method of weighted least squares is used, then

β̂ = (X ′Σ−1X)−1(X ′Σ−1Y ),

with Σβ̂ = σ2(X ′Σ−1X)−1.

Weighted least squares estimation is used in the Hachemeister’s regression model which
will be covered in later section.[4]

3.2 OLS vs Quantile

The mean measure, obtained from the classical multiple linear regression, represents
the average behaviour of a distribution, but provides little information about the tail
behaviour of that distribution. In 1918, Koenker and Bassett proposed the quantile
regression, which enables to estimate various quantile functions of a conditional distri-
bution. This approach provides a more comprehensive picture of the effect of dependent
variables on independent variable by putting different quantile regressions together in
one graph. To see the difference two simple examples are presented. Both disturbances
are normally distributed, data of figure 2a is with constant variance, data of figure 2b is
with non-constant variance. As can be seen from figure 2b that the dependent variable
becomes more variable when the independent variable increases.

Estimating Insurance Pre-
miums using Credibility
Theory and Quantiles

25



(a) Data (constant variance) (b) Data (non-constant variance)

Figure 2: Two simple data sets

These two data sets are generated by employing the following R-codes :

Figure 3: Two artificial data

First, apply OLS regression to both data sets. Figure 4a and figure 4b show the results
separately. When the variance is constant, the conditional mean from OLS regression
provides a good estimate of dependent variable. However, it is not the case when the
variance is not constant, as the conditional mean becomes less meaningful when the
explanatory variable increases, seen from figure 4b.
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(a) OLS (constant variance) (b) OLS (non-constant variance)

Figure 4: OLS regression

Second, apply quantile regression to both data sets. The slope coefficient for the
quantile indicated on the x-axis for both data sets are shown separately in figure 5a and
figure 5b. The horizontal solid lines are the OLS coefficient estimates, the horizontal
dotted lines are its confidence interval; the black curved lines are the quantile coefficient
estimates, the shaded area is its confidence interval.

(a) Quantile coefficients
(constant variance)

(b) Quantile coefficients
(non-constant variance)

Figure 5: Quantile regression
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Figure 5a shows that the quantile coefficient estimates fall well inside the confidence
interval when the variance is constant, meaning the quantile estimates are not significantly
different from the OLS coefficient estimates. On the other hand, when the variance is not
constant, figure 5b shows that the majority of quantile coefficient estimates fall outside
of the OLS confidence interval, meaning quantile coefficient estimates are significantly
different from OLS coefficient estimates. This implies that, under the assumption that the
disturbance is normally distributed and with constant variance, there is no efficiency gain
by using quantile regression; but quantile estimations perform better when the variance
is not constant, as the coefficients can vary across quantiles. To point out, the estimated
coefficients are significantly different from 0, when 0 is not in the confidence interval. In
case the error term is not normally distributed, quantile regression may be more efficient
than the least squares estimation, mentioned in Pitselis’ paper.

3.3 The Method of Quantile Regression

Similar to general linear regression model, quantile regression model has the following
regression equation:

ypi = x′iβp + upi .

Here, ypi is the p-quantile of the observed risks yi1, ..., yin; βp is the corresponding regres-
sion coefficients. As p can take any value between 0 and 1, βp may have different value
for each choice of p, which is different from the linear regression model where βp is a fixed
parameter. The p-conditional quantile of yi given xi is:

Qp(yi|xi) = x′iβp

In view of (1), Qp of quantile regression can be written in the following form:

Qp(yi|xi) = p

∫
yi≥x′iβp

|yi − x′iβp| dFY |X(y) + (1− p)
∫
yi<x′iβp

|yi − x′iβp| dFY |X(y) (3)

The estimator of βp can be obtained by minimizing its sample counterpart:

Q̂p(yi|xi) =
1

N

[
p

N∑
i:yi≥x′iβp

|yi − x′iβp| + (1− p)
N∑

i:yi<x′iβp

|yi − x′iβp|
]

=
1

N

N∑
i=1

g(yi − x′iβp|p)

where

g(yi − x′iβp|p) =

{
p(yi − x′iβp) if yi − x′iβp ≥ 0

(1− p)(yi − x′iβp) if yi − x′iβp < 0

For p = 0.5,

2Q̂0.5(yi|xi) =
1

N

n∑
i=1

|yi − x′iβp|

This is a regression estimated via the method of LAD: Least Absolute Deviations Estima-
tion, referred to as a ”median regression”. This minimization problem can be set up as
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a linear programming problem, and quantile regression can be implemented in software
such as R.
The function g(yi − x′iβp|p) is known as the ”check function”: piecewise linear and not

differentiable at yi = x′iβp. One way to minimize Q̂p(yi|xi) is to use the directional deriva-

tives of Q̂p(yi|xi). The directional derivatives works as follows:
let ω be an arbitrary direction,

d

dδ
Q̂p

(
βp + δω; p

)∣∣∣∣
δ=0

=
1

N

(
d

dδ

N∑
i=1

(
ξp − x′iβp − δx′iω

)(
p− I{ξp−x′iβp−δx′iω<0}

))∣∣∣∣
δ=0

= − 1

N

N∑
i=1

ψp
(
ξp − x′iβp,−x′iω

)
x′iω

where

ψp(ξp − x′iβp,−x′iω) =

{
p− I{ξp−x′iβp<0} if ξp − x′iβp 6= 0

p− I{−x′iω<0} if ξp − x′iβp = 0

To determine the quantile regression estimator of βp is to find a point that minimizes

the function Qp(βp; p), which is equal to find a point where
d

dδ
Qp

(
βp + δω; p

)
is non-

negative at all directions. The p-quantile regression estimator of βp is denoted as β̂p,

quantile regression residuals are êi(p) = ξp − x′iβ̂p .

If plim
1

n
X ′X equals a finite and positive definite matrix, meaning data is well-

behaved, β̂p is consistent and asymptotically normally distributed with asymptotic co-
variance matrix

Asy.V ar[β̂p] =
1

n
H ′GH ′,

where

H = plim
1

n

n∑
i=1

fp(0|xi)xix′i ,

G = plim
p(−p)
n

n∑
i=1

xix
′
i .

It is worth mentioning that computation of fp(0|xi) could be complicated.[4]

4 Credibility Models

4.1 The Bühlmann-Straub model

Let Xjt be a claim amount for contract j at time t, then Xjt can be decomposed into
three parts:

Xjt = m+ Ξj + Ξjt, j = 1, ..., J, t = 1, ..., T + 1

m: the overall mean claim, i.e. the expected value of the claim amount for an arbitrary
policyholder in the portfolio;

Estimating Insurance Pre-
miums using Credibility
Theory and Quantiles

29



Ξj : denotes a random deviation from m, iid, with E[Ξj] = 0, V ar[Ξj] = a;
Ξjt: denotes the deviation for year t from the long-term average. Ξj1,Ξj2,... are iid, with
E[Ξjt] = 0, V ar[Ξjt] = s2/wjt, wjt is the weight attached to observation Xjt.
This model assumes equal numbers of policies in Xjt.
Then the unbiased predictor of Xj,n+1 which minimizes the following objective function :

E

[
{m+ Ξj −

K∑
j=1

n∑
i=1

hjiXji}2

]
, subject to E[m+ Ξj] =

∑
i,t

hjiXji,

equals the credibility premium:

zjXjw + (1− zj)Xzw,

where

zj =
awjΣ

s2 + awjΣ
; zΣ =

J∑
j=1

zj ;

wjΣ =
T∑
t=1

wjt ; wΣΣ =
J∑
j=1

wjΣ ;

Xjw =
T∑
t=1

wjt
wjΣ

Xjt; Xww =
J∑
j=1

wjΣ
wΣΣ

Xjw ; Xzw =
J∑
j=1

zj
zΣ

Xjw .

Unbiased parameter estimates:

m̃ = Xww;

s̃2 =
1

J(T − 1)

∑
j,t

wjt(Xjt −Xjw)2 ;

ã =

∑
j

wjΣ(Xjw −Xww)2 − (J − 1)s̃2

wΣΣ −
∑
j

w2
jΣ/wΣΣ

, in case ã = 0, set ã = (J − 1)× s̃2 .

It is worth noting that all the equations hold if given Ξj, Ξjt is iid and with E[Ξjt|Ξj] = 0.
Then Cov[Ξjt,Ξju] = 0 (t 6= u), Cov[Ξj,Ξjt] = 0, which means that Ξjt and Ξju are un-
correlated, Ξj and Ξjt are uncorrelated, but the random variables Xjt are not marginally
uncorrelated.
In the Quantile credibility model and Quantile regression credibility model Georgios Pit-
selis uses Θj instead of Ξj, and assumes that given Θj, X1j,, ..., Xnj are conditionally
independent and with the same distribution function.[2]
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Numeric Example
Apply the Bühlmann-Straub model to Hachemeister’s claims data set (the severity aver-
age loss per claim per state in 12 periods). The data set is shown below.

P
Average loss per claim Number of claims per period

State1 State2 State3 State4 State5 State1 State2 State13 State4 State5
1 1738 1364 1759 1223 1456 7861 1622 1147 407 2902
2 1642 1408 1685 1146 1499 9251 1742 1357 396 3172
3 1794 1597 1479 1010 1609 8706 1523 1329 348 3046
4 2051 1444 1763 1257 1741 8575 1515 1204 341 3068
5 2079 1342 1674 1426 1482 7917 1622 998 315 2693
6 2234 1675 2103 1532 1572 8263 1602 1077 328 2901
7 2032 1470 1502 1953 1606 9456 1964 1277 352 3275
8 2035 1448 1622 1123 1735 8003 1515 1218 331 2697
9 2115 1464 1828 1343 1607 7365 1527 896 287 2663
10 2262 1831 2155 1243 1573 7832 1748 1003 384 3017
11 2267 1612 2233 1762 1613 7849 1654 1108 321 3242
12 2517 1471 2059 1306 1690 9077 1861 1121 342 3425

Table 1: Hachemeister’s claims data set.

Calculations:

w1Σ = 100155, w2Σ = 19895, w3Σ = 13735, w4Σ = 4152, w5Σ = 36110;

wΣΣ = 174047;

X1w = 2060.921, X2w = 1511.224, X3w = 1805.843 , X4w = 1352.976, X5w = 1599.829;

Xww = 1865.404;

s̃2 = 139120026, ã = 89638.73;

Z1 = 0.9847404, Z2 = 0.9276352, Z3 = 0.8984754, Z4 = 0.7279092, Z5 = 0.9587911.

ZΣ = 4.497551, Xzw = 1683.713.

Premiums estimated:

state1 state2 state3 state4 state5
premium 2055.165 1523.706 1793.444 1442.967 1603.285

Table 2: premiums Bühlmann-Straub model

4.2 Quantile Credibility Model

Based on Bülmann’s classical model assumptions, Georgios Pitselis developed the quan-
tile credibility model. Let Xj1, Xj2, ..., Xjnj

be the observed total claim amounts (or the
total number of claims) in period i=1,2,.., nj for contract j = 1,2,...,K, let Θj be an

unobservable risk parameter that describes for contract j, and ξ̂pj be the estimator of ξpj.
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The model assumptions:
(i) Given Θj = θj, the observations Xj1, ..., Xjnj

are conditionally independent with the
same distribution function;
(ii) Θj is a random variable with distribution U;

(iii) Ξp(Θj) = E(ξ̂pj|Θj);

(iv) νp = V ar(ξ̂pj|Θj).
The structural parameters are defined as follows:
Ξp = E[Ξp(Θj)], s2

ξp
= E[νp(Θj)], ψp = V ar[Ξp(Θj)].

Then the linear quantile credibility estimation with K contracts can be defined as:

ΞCred
p = Zpj ξ̂p + (1− Zpj)Ξp ,

where

Zpj =
ψp

E[νp(Θj)] + ψp
.

Proof Define a linear Bayes estimator of ξp as gj(c
j
0, c

j
pl, ξ̂lp) = cj0 +

K∑
l=1

cjlpξ̂lp. The best

estimator g(Xj) minimizes the following objective function:

Q = E

[
Ξp(Θj)− cj0 −

K∑
l=1

cjlpξ̂lp

]2

. (4)

Taking the derivative of (4) with respect to cj0, c
j
lp

2, respectively
dQ

dcj0
= 2E

[(
Ξp(Θj)− cj0 −

K∑
l=1

cjlpξ̂lp

)
(−1)

]
set
= 0 ,

dQ

dcjl′p
= 2E

[(
Ξp(Θj)− cj0 −

K∑
l=1

cjlpξ̂lp

)
(−ξ̂l′p)

]
set
= 0 .

Then 
E[Ξp(Θj)]− cj0 −

K∑
l=1

cjlpE(ξ̂lp) = 0 , (?)

E[Ξp(Θj)ξ̂l′p]− cj0E(ξ̂l′p)− E(ξ̂l′p)
K∑
l=1

cjlpE(ξ̂lp) = 0 .

Multiply the equation (?) by E(ξ̂l′p):
E[Ξp(Θj)]E[ξ̂l′p]− cj0E(ξ̂lp)−

K∑
l=1

cjlpE(ξ̂pl)E[ξ̂l′p] = 0 ,

E[Ξp(Θj)ξ̂l′p]− cj0E(ξ̂l′p)− E[ξ̂l′p]
K∑
l=1

cjlpE(ξ̂lp) = 0 .

2In Pitselis’ paper, he uses p′ insteas of p, which could be a typo.
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It immediately follows that:

E[Ξp(Θj)]E[ξ̂l′p]− E[Ξp(Θj)ξ̂l′p] = E[ξ̂l′p]
K∑
l=1

cjlpE(ξ̂lp)−
K∑
l=1

cjlpE(ξ̂pl)E[ξ̂l′p]

Cov[Ξp(Θj), ξ̂l′p] =
K∑
l=1

cjlpCov[ξ̂lp, ξ̂l′p ] .

Therefore, if l′ = j:

Cov[Ξp(Θj), ξ̂jp] = cjpV ar[ξ̂jp]

cjp =
Cov[Ξp(Θj), ξ̂jp]

V ar[ξ̂jp]

=
E
[
Cov[Ξp(Θj), ξ̂jp

∣∣Θj]
]

+ Cov
[
E[Ξp(Θj)

∣∣Θj], E[ξ̂jp(Θj)
∣∣Θj]

]
E
[
V ar(ξ̂jp

∣∣Θj)
]

+ V ar
[
E(ξ̂jp

∣∣Θj)
]

=
V ar[Ξp(Θj)]

E[νp(Θj)] + V ar[Ξp(Θj)]

=
ψp

E[νp(Θj)] + ψp
.

Parameter estimation:

Ξ̂p = ξ̄p. =
1

K

K∑
j=1

ξ̂jp ,

E ̂[νp(Θj)
]

=
1

K

K∑
j=1

ω̂p(Θj)

nj
,

ψ̂p =
1

K − 1

K∑
j=1

(ξ̂jp − ξ̄p.)2 − 1

K

K∑
j=1

ω̂p(Θj)

nj
.

Then the linear quantile credibility with K contracts can be estimated as:

Ξ̂jp

Cred
= Ẑjpξ̂jp + (1− Ẑjp)Ξ̂p ,

where

Zjp =
ψ̂p

E[ν̂p(Θj)] + ψ̂p
,

ω̂p(Θ) =
n2(ybnp+lc − ybnp−lc)2

4Z2
1−α/2

,

l = Z1−α/2
√
np(1− p).

Note that b∗c is the integer part of *, α is the significance level.
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Numeric Example
Apply this method to Hachemeister’s claims data set. Here only premiums for the me-
dian (p=0.5) are presented. α is chosen to be 0.05, then l = 3.394757. A shortcoming
of this approach, however, if p is below 0.366 (approximately), ybnp−lc will be invalid, as
0 < np− l < 1 because of small sample size, whereas order statistic starts at y1.

Premiums estimated:

state1 state2 state3 state4 state5
premium 1521.66 1681.396 1602.864 1730.946 1644.133

Table 3: Premiums Quantile credibility model

5 Regression Credibility Models

5.1 Hachemeister’s Regression Model

Hachemeister forecasted average claim amounts for bodily injury claims classified by state
in the USA. The claim data consists 12 periods, ranges from the third quarter of 1970 to
the second quarter of 1973. Due to inflation these data is affected by time trends. In his
model he regressed the claims averages for each state on explanatory variables: constant
and trend(1:12), constructed a diagonal weighting matrix by putting claim frequencies in
the diagonal, computed the regression coefficients using weighted least squares estima-
tion. He estimated the credibility factor for the individual regression coefficients, then
set premium as the predicted claims average for the next period.
The model is as follows:
let Yj = (Yj1, Yj2, · · · , Yjn)′ be an observation vector of the jth risk, in Hachemeis-
ter’s regression model the entries are the claims averages of state j in quarter t; let
wj = (ωj1, ωj2, · · · , ωin)′ be the associated known weights, in this model ωjt are the cor-
responding number of claims; let Θj be the set of all potential and possible values of the
risk profile θj in the portfolio.
This model assumes that given Θj, Xj satisfies the regression equation:

Yj = Xjβj + εj .

The model assumptions:
(i) Θ1,Θ2, · · · are identically distributed, the pairs (Θ1, Y1), · · · are independent;
(ii)Given Θj, Yj1, Yj2, · · · , are independent, and

E[Yj|Θj]︸ ︷︷ ︸
n × 1

= Xj︸︷︷︸
n×K

β(Θj)︸ ︷︷ ︸
K×1

,

where

β(Θj) = vector of unknown coeffients of length K(K ≤ n), is considered as a random

variable, its distribution is determined by the sturcture of the collective,

Xj = known fixed matrix of rank K;
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(iii)Cov(Xj, X
′
j|Θj) = σ2(Θj)W

−1
j .

The structural parameters:
s2 = E[σ2(Θj)], A = Cov(β(Θj), β(Θj)

′), b = E[β(Θj)].

The credibility estimator for β(Θj):

β(Θj)
Cred = Zjβ̂j+(I−Zj)b, where Zj = A[A+s2(X ′jWjXj)

−1]−1, β̂j = (X ′j(Wj)
−1Xj)

−1X ′jWjYj.

Parameter estimation:

b̂ = (
J∑
j=1

Zj)
−1

J∑
j=1

Zjβ̂j;

ŝ2 =
1

J

J∑
j=1

ŝ2
j , with ŝ

2
j =

1

n−K
(Yj −Xjβ̂j)

′(Yj −Xjβ̂j);

Â =
1

J − 1

J∑
j=1

Zj(β̂j − b̂)(βj − b̂)′.

Numeric Example
Apply this method to Hachmeister’s claims data.

State Indiv.coef.: β̂j = (X ′j(Wj)
−1Xj)

−1X ′jWjYj,

where X = Xj =


1 1
1 2
...

...
1 12

, Wj =

wj1 0 · · · 0
0 wj2 · · · 0
0 0 · · · wj,12

, Yj =

 Lj1
...

Lj,12

.

The results are shown in the table below:

state1 state2 state3 state4 state5
intercept 1658.47243 1398.30252 1532.99872 1176.70407 1521.89933

slope coefficient 62.39246 17.13975 43.30732 27.80702 11.87448

Table 4: Regression coefficients Hachemeister’s regression model

All the slope coefficients are positive, then there indeed exists a long-term increase
in the data, which can also be seen from the regression lines (upward sloping) shown in
figure 6.
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Figure 6: Weighted least square regressions

Within state variance: ŝ2 =
1

5

5∑
j=1

ŝ2
j = 49870187,

where ŝ2
1 = 121262869, ŝ2

2 = 30174010, ŝ2
3 = 52483869, ŝ2

4 = 24359005, ŝ2
5 = 21071182;

State Adj.coef.:

state1 state2 state3 state4 state5
intercept 1693.52313 1373.02958 1545.36429 1314.54855 1417.40928

slope coef. 57.17147 21.34641 40.61014 14.80935 26.30721

Table 5: Regression coefficients Hachemeister’s regression model

Finally, Premium = Adj. intercept+ 13× slope coef. :

state1 state2 state3 state4 state5
premium 2436.75 1650.53 2073.30 1507.07 1759.40

Table 6: Premiums Hachemeister’s regression model

5.2 Quantile Regression Credibility Model

This section shows how quantiles could be incorporated into Hachemeister’s model. Here
only unweighted case will be considered. Assume that there are J contracts, for each con-
tract n years of claims experience, or other characteristics. Let QP (yjt|Θj)(0 < p < 1) be
the conditional quantile of yjt corresponding to the unobservable random risk parameter
Θj and Yj = (yj1, ..., yjn)′ an observable vector of risks.
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Further assumptions:
(i) Θ1,Θ2, · · · are identically distributed, the pairs (Θ1, Y1), · · · are independent;
(ii) Given Θj,

Qp(Yj|Θj)︸ ︷︷ ︸
n × 1

= Xj︸︷︷︸
n×K

βp(Θj)︸ ︷︷ ︸
K×1

,

where

βp(Θj) = vector of unknown coefficients of length K(K ≤ n) for pth quantile, is considered as a random

variable, its distribution is determined by the structure of the collective;

Xj = known fixed matrix of rank K;

Cov(β̂pj, β̂pj
′
|Θj) = σ2

ξp(Θj)(X
′
jXj)

−1.

The structural parameters:
s2
ξp

= E[σ2
ξp

(Θj)], Ap = Cov(βp(Θj), βp(Θj)
′), βp = E[βp(Θj)].

The credibility estimator for β(Θj):

βpj(Θj)
Cred = Zpjβ̂pj + (I − Zpj)βp,

where
Zpj = Ap[Ap + s2

ξp
(X ′jXj)

−1]−1, β̂pj = (X ′jXj)
−1X ′jYpj .

Zpj is solution to the following minimization problem:

Q = E

(
[βp(Θj)− B̂pj

Cred
]′[βp(Θj)− B̂pj

Cred
]

)
= E

(
[βp(Θj)− βp − Zpj(β̂pj − βp)]′[βp(Θj)− βp − Zpj(β̂pj − βp)]

)

Let β0
p(Θj) = βp(Θj)− βp, β0

pj = β̂pj − βp, then the above equation becomes:

Q = E

(
[β0
p(Θj)− Zpjβ0

pj]
′[β0

p(Θj)− Zpjβ0
pj]

)
= E

(
β0
p(Θj)

′β0
p(Θj) + (β0

pj)
′(Zpj)

′Zpjβ
0
pj − (β0

p(Θj))
′Zpjβ

0
pj − (Zpjβ

0
pj)
′β0
p(Θj)

)

Using the product rule and differentiating with respect to the matrix Zpj,

dQ

dZpj
= −2E[β0

p(Θj)(β
0
pj)
′ − Zpjβ0

pj(β
0
pj)
′]
set
= 0
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as

E[β0
p(Θj)(β

0
pj)
′ − Zpjβ0

pj(β
0
pj)
′]

= E

(
[βp(Θj)− βp][βp(Θj)− βp]′ − Zpj[β̂pj − βp][β̂pj − βp]′

)
= E

(
[βp(Θj)− βp][βp(Θj)− βp]′

)
− E

(
Zpj[β̂pj − βp][β̂pj − βp]′

)
= Cov(βp(Θj))− ZpjCov(β̂pj)

= Cov(βp(Θj))− Zpj
(
E(Cov[β̂pj|Θj]) + cov(E[β̂pj|Θj])

)

then Zpj = Cov(βp(Θj))

(
E(Cov[β̂pj|Θj]) + cov(E[β̂pj|Θj])

)−1

Parameter estimation:

β̂pj = argmin
βp

( ∑
i:yi≥b

p|yji − x′jiβj|+
∑
i:yj<b

(1− p)|yji − x′jiβj|
)

;

β̂p =
1

J

J∑
j=1

β̂pj;

Âp =
1

J − 1

J∑
j=1

(β̂pj − β̂p)(β̂pj − β̂p)′ −
1

J

J∑
j=1

σ̂2
ξp

(Θj)(X
′
jXj)

−1;

Cov(β̂pj|Θj) = σ2
ξp(Θj)(X

′
jXj)

−1 =
p(1− p)
n(fξp)2

(X ′jXj)
−1.

σ2
ξp

(Θj) is estimated using order statistic estimation:

σ̂2
ξp

=
1

J

J∑
j=1

ω̂p(Θj)

n
,

where

ω̂p(Θj) =
n2(ybnp+lc − ybnp−lc)2

4Z2
1−α/2

, l = Z1−α/2
√
np(1− p).

Numeric Example

Apply this method to Hachmeister’s claims data.
Premiums estimated:

state1 state2 state3 state4 state5
premium 2098.915 1684.715 1960.715 1618.415 1762.39

Table 7: Premiums Quantile regression credibility model
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6 Effect of outliers on the models

The premiums estimated in previous sections are summarized in Table 8. It is noticeable
from the summary statistics in the table that for each state premium estimated using
Hachemeister’s regression model is greater than using Bühlman-Straub model, which is
due to the fact that Hachemeister’s regression model considers long-term increas in next
period, while Bühlman-Straub model doesnot.

premium1 premium2 premium3 premium4 premium5
Bühlman-Straub 2055.17 1523.71 1793.44 1442.97 1603.29
Hachemeister regression 2436.75 1650.53 2073.30 1507.07 1759.40
Quantile(0.5) credi. 1521.66 1681.40 1602.87 1730.95 1644.13
Quantile regression credi.(0.5) 2098.92 1684.72 1960.72 1618.42 1762.39

Table 8: Summary premiums.

In order to see the effect of outliers on these four models, Hachemeister’s claims data
is revised in two steps. The results are presented in Table 9.

(a) Increase the last observation of state1 to 100000

premium1 premium2 premium3 premium4 premium5
Bühlman-Straub 10895.74 1511.25 1805.87 1353.10 1599.84

Hachemeister regression - - - - -

(b) Increase the last observation of state1, state2 and state3 to 100000

premium1 premium2 premium3 premium4 premium5
Bühlman-Straub 10895.75 10727.69 9799.37 1353.31 1599.87

Hachemeister regression - - - - -
Quantile(0.5) 1477.74 1698.73 1590.08 1767.28 1647.18

Table 9: Summary premiums for revised data.

First, increase the last observation of state 1 to 100000. The results indicate that
the most significant change is in the premium estimated for state1 using the Bühlmann-
Straub model. To point out, ã in the Bühlmann-Straub model is negative in this case, so
set ã = (J − 1)× s̃2. Furthermore, the Hachemeister’s regression model is invalid under
this circumstance, because the design matrix is not invertible, hence it cannot be used to
develop a regression model. Note that the premiums estimated using Quantile credibility
model and Quantile regression credibility model are omitted in the table, as there is no
changes to these premiums.
Next, also increase the last observation of state 2 and state 3 to 100000. Similarly,
the premiums estimated for state 1, state2 and state3 are largely affected using the
Bühlmann-Straub model. Moreover, ã in the Bühlmann-Straub model is negative and
the Hachemeister’s regression model remains invalid. What is particlarly interersting is
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that there is just a small increase to premiums estimated using Quantile credibility model,
but no changes to the premiums estimated using Quantile regression credibility model.
It can be clear from the results that outliers have less impact on Quantile credibility
model and Quantile credibility regression model than on the Bühlmann-Straub model
and the Hachemeister’s regression model.

7 Conclusion

Despite the fact that the models are applied to Hachemeister’s data set which is different
from Pitselis’ paper, similar conclusions can be drawn. They are summarized as follows.
Firstly, incorporating with quantiles enables to estimate premiums as well as changes in
these premiums at different points of the claims distributions. Secondly, Quantile credi-
bility model and Quantile credibility regression model are less sensitive to outlying data.
Finally, as the claims distributions are in general heavy-tailed and skewed to the right,
quantile estimation is more desirable than least squares estimation in the context of the
insurance industry. However, it is important to note that there is a shortcoming in the
Hachemeister’s data set. That is, the size of Hachemeister’s data set is relatively small,
which could influence the impact of the outliers on the models. Therefore, further re-
searches such as applying these models to data with a larger sample size are recommended.
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