The Neurotrophic Hypothesis of Depression: Treatment Implications for Erythropoietin

  • Lea Julia Mertens

Abstract

A purely neurotransmitter-based explanation of major depression and antidepressant action, such as the monoamine hypothesis, falls short to explain the delayed clinical onset of most agents in reference to the immediate neurochemical effects. Recently, in attempts to understand the psychobiological underpinnings of depression, the focus shifted to an involvement of intracellular signaling cascades, gene expression and protein translation. This review discusses evidence for the so-called neurotrophic hypothesis of depression, which emphasizes stress-induced disruption of brain-derived neurotrophic factors (BDNF), second messenger systems, gene expression and subsequent neural atrophy and network changes that manifest as depressive symptoms in the etiology of depression. Additionally, within the framework of the neurotrophic hypothesis, the treatment potential of the cytokine Erythropoietin is discussed.

References

Barbany, G., & Persson, H. (1992). Regulation of Neurotrophin mRNA Expression in the Rat Brain by Glucocorticoids. Eur J Neurosci, 4(5), 396-403

Bayer, T. A., Schramm, M., Feldmann, N., Knable, M. B., & Falkai, P. (2000). Antidepressant drug exposure is associated with mRNA levels of tyrosine receptor kinase B in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry, 24(6), 881-888.

Bennett, C. L., Silver, S. M., Djulbegovic, B., Samaras, A. T., Blau, C. A., Gleason, K. J., . . . Henke, M. (2008). Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA, 299(8), 914-924. doi:10.1001/jama.299.8.914

Chen, B., Dowlatshahi, D., MacQueen, G. M., Wang, J. F., & Young, L. T. (2001). Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry, 50(4), 260-265.

Dowlatshahi, D., MacQueen, G. M., Wang, J. F., & Young, L. T. (1998). Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet, 352(9142), 1754-1755. doi:10.1016/S0140-6736(05)79827-5

Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct, 213(1-2), 93-118. doi:10.1007/s00429-008-0189-x

Duman, R. S., & Li, N. (2012). A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos Trans R Soc Lond B Biol Sci, 367(1601), 2475-2484. doi:10.1098/rstb.2011.0357

Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biol Psychiatry, 59(12), 1116-1127. doi:10.1016/j.biopsych.2006.02.013

Dwivedi, Y., Rao, J. S., Rizavi, H. S., Kotowski, J., Conley, R. R., Roberts, R. C., . . . Pandey, G. N. (2003). Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects. Arch Gen Psychiatry, 60(3), 273-282.

Dwivedi, Y., Rizavi, H. S., Roberts, R. C., Conley, R. C., Tamminga, C. A., & Pandey, G. N. (2001). Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem, 77(3), 916-928.

Girgenti, M. J., Hunsberger, J., Duman, C. H., Sathyanesan, M., Terwilliger, R., & Newton, S. S. (2009). Erythropoietin induction by electroconvulsive seizure, gene regulation, and antidepressant-like behavioral effects. Biol Psychiatry, 66(3), 267-274. doi:10.1016/j.biopsych.2008.12.005

Harmer, C. J., Duman, R. S., & Cowen, P. J. (2017). How do antidepressants work? New perspectives for refining future treatment approaches. The Lancet Psychiatry, 4(5), 409-418. doi:10.1016/s2215-0366(17)30015-9

Hayley, S., & Anisman, H. (2013). Neurotrophic paths in the treatment of depression. J Psychiatry Neurosci, 38(5), 291-293. doi:10.1503/jpn.130146

Hayley, S., & Litteljohn, D. (2013). Neuroplasticity and the next wave of antidepressant strategies. Front Cell Neurosci, 7, 218. doi:10.3389/fncel.2013.00218

Kamal, A., Al Shaibani, T., & Ramakers, G. (2011). Erythropoietin decreases the excitatory neurotransmitter release probability and enhances synaptic plasticity in mice hippocampal slices. Brain Res, 1410, 33-37. doi:10.1016/j.brainres.2011.06.059

Ma, C., Cheng, F., Wang, X., Zhai, C., Yue, W., Lian, Y., & Wang, Q. (2016). Erythropoietin Pathway: A Potential Target for the Treatment of Depression. Int J Mol Sci, 17(5). doi:10.3390/ijms17050677

Miskowiak, K. W., Favaron, E., Hafizi, S., Inkster, B., Goodwin, G. M., Cowen, P. J., & Harmer, C. J. (2010). Erythropoietin modulates neural and cognitive processing of emotional information in biomarker models of antidepressant drug action in depressed patients. Psychopharmacology (Berl), 210(3), 419-428. doi:10.1007/s00213-010 1842-7

Miskowiak, K., Inkster, B., Selvaraj, S., Wise, R., Goodwin, G. M., & Harmer, C. J. (2008). Erythropoietin improves mood and modulates the cognitive and neural processing of emotion 3 days post administration. Neuropsychopharmacology, 33(3), 611-618. doi:10.1038/sj.npp.1301439

Miskowiak, K. W., Macoveanu, J., Vinberg, M., Assentoft, E., Randers, L., Harmer, C. J., . . . Kessing, L. V. (2016). Effects of erythropoietin on memory-relevant neurocircuitry activity and recall in mood disorders. Acta Psychiatr Scand, 134(3), 249-259. doi:10.1111/acps.12597

Miskowiak, K. W., Vinberg, M., Christensen, E. M., Bukh, J. D., Harmer, C. J., Ehrenreich, H., & Kessing, L. V. (2014). Recombinant human erythropoietin for treating treatment-resistant depression: a double-blind, randomized, placebo-controlled phase 2 trial. Neuropsychopharmacology, 39(6), 1399-1408. doi:10.1038/npp.2013.335

Popoli, M., Yan, Z., McEwen, B. S., & Sanacora, G. (2011). The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nature Reviews Neuroscience, 13(1), 22-37. doi:10.1038/nrn3138

Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., . . . Raichle, M. E. (2009). The default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A, 106(6), 1942-1947. doi:10.1073/pnas.0812686106

Stahl, S. M. (2013). Essential psychopharmacology: Neuroscientific basis and practical application (4th ed). Cambridge, UK: Cambridge University Press.

Vetulani, J., & Sulser, F. (1975). Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature, 257(5526), 495-496. doi:10.1038/257495a0

Vinberg, M., Miskowiak, K., Hoejman, P., Pedersen, M., & Kessing, L. V. (2015). The effect of recombinant erythropoietin on plasma brain derived neurotrophic factor levels in patients with affective disorders: a randomised controlled study. PLoS One, 10(5), e0127629. doi:10.1371/journal.pone.0127629

WHO. (2017, February). Depression Fact Sheet. World Health Organization. Retrieved 04 July 2017 from www.who.int/mediacentre/factsheets/fs369/en/

WHO. (2008). The global burden of disease: 2004 update. Geneva, Switzerland: WHO Press, World Health Organization 2008. Retrieved 04 July 2017 from www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf

Published
2018-12-18
Section
Articles