Localization and quantification of dystrophin in epileptic rats

  • W.T.E. Yeung


Aim: In Duchenne muscular dystrophy (DMD) populations, a higher prevalence of epilepsy has been found compared with control groups. We hypothesized that epilepsy/seizures causes loss of dystrophin in the brain. Our aim was to localize dystrophin in cerebellum and hippocampus and to develop a reliable method for quantification of dystrophin. Methods: Male adult Spraque-Dawley rats were used in a amygdala kindled model (N=24). Cerebellar and hippocampal tissue were stained immunohistochemically with anti-dystrophin, anti-calbindin, anti-GFAP and Hoechst. Anti-NeuN was only applied in hippocampal tissue. Under fluorescent microscope, pictures were taken for quantification in ImageJ. Results: Glia cells and Purkinje cells colocalized with dystrophin, however, hippocampal neuronal cells did not show a colocalization with dystrophin. Statistical analysis of the quantification of dystrophin around the Purkinje neuron, showed a high intra-observer correlation (Mean grey value: Pearson correlation (r=1,000, P<0,0001) and ICC (r=1,000, P<0,0001); Intensity density: Pearson correlation (r=0,986, P<0,000) and ICC (r=0,984, P<0,0001)). Conclusion: Dystrophin is ubiquitously expressed in the cerebellum and hippocampus, but the exact distribution of the dystrophin isoforms in these areas are not clear yet. We have developed a reliable quantification method of dystrophin around the cerebellar Purkinje cells, but not for glia cells and hippocampal neurons. Future studies should therefore not only be aimed at the distribution of the dystrophin isoforms, but also at the quantification of glia cells and hippocampal neurons.


Li W., Zheng Y., Zhang W., Wang Z., Xiao J., Yuan Y. Progression and variation of fatty infiltration of the thigh mucles in Duchenne muscular dystropy, a muscle magnetic resonance imaging study. Neuromuscul Disord. 2015 May;25(5):375-80

van Ruiten H.J.A., Straub V., Bushby K., Guglieru M. Improving recognition of Duchenne muscular dystrophy: a retrospective case note review. Arch Dis Child. 2014;99:1074-1077

Elliot S.A., Davidson Z.E., Davies P.S., Truby H. A bedside measure of body composition in Duchenne muscular dystrophy. Pediatr Neurol. 2015 Jan;52(1):82-7

De Sarro G., Ibbadu G.F., Marra R., Rotiroti D., Loiacono A., Di Paola E.D., Russo E. Seizure susceptibility to various convulsant stimuli in dystrophyn-deficient mdx mice. Neuroscience Reasearch 50. 2004. 37-44

Goodwin F., Muntoni F., Dubowitz V. Epilepsy in Duchenne and Becker muscular dystrophies Eur J Paediatr Neurol. 1997. 115-119

Etemadifar M., Molaei S. Epilepsy in boys with Duchenne muscular dystrophy. J Res Med Sci. 2004. 116-119

Pane M., Messina S., Bruno C., D’Amico A., Villanova M., Brancalion B., Sivo S., Bianco F., Striano P., Battaglia D., Lettori D., Vita G.L., Bertini E., Gualandi F., Ricotti V., Ferlini A., Mercuri E. Duchenne muscular dystrophy and epilepsy. Neuromuscul. Disord. 2013. 23, 313-315

Hendriksen R.G.F., Hoogland G., Schipper S., Hendriksen J.G.M., Vles J.S.H., Aalbers M.W. A possible role of dystrophin in neuronal excitability: A review of the current literature. Neurosci Biobehav rev 51. 2015 Apr;51:255-62

Ahn A.H., Kunkel L.M. The structural and functional diversity of dystrophin. Nat Genet. 1993 Apr;3(4):283-91

Ghedini P.C., Avellar M.C., De Lima T.C., Lima-Landman M.T., Lapa A.J., Souccar C. Quantitative changes of nicotinic receptors in the hippocampus of sytrophin-deficient mice. Brain Res. 2012 Nov;1483:96-104

Anderson, J.L., Head, S.I., Rae, C., Morley, J.W. Brain function in Duchenne muscular dystrophy. Brain: J. Neurol. 2002. 125, 4–13

Cyrulnik S.E., Hinton V. J. Duchenne muscular dystrophy: a cerebellar disorder? Neurosci. Biobehav. 2008. 32:486-96

Lidov H.G. Dystrophin in the nervous system. Brain Pathol. 1996. 6, 63-77

Sekiguchi M., Zushida K., Yoshida M., Maekawa M., Kamichi S., Yoshida M., Sahara Y., Yuasa S., Takeda S., Wada K. A deficit of brain dystrophin impairs specific amygdala GABAergic transmission and enhances defensive behaviour in mice. Brain. 2009 Jan;132(Pt1):124-35

Knuesel, I., Mastrocola, M., Zuellig, R.A., Bornhauser, B., Schaub, M.C., Fritschy, J.M. Short communication: altered synaptic clustering of GABAA receptors in mice lacking dystrophin (mdx mice). Eur. J. Neurosci. 1999. 11, 4457–4462

Brünig, I., Suter, A., Knuesel, I., Lüscher, B., Fritschy, J.M. GABAergic terminals are required for postsynaptic clustering of dystrophin but not of GABA(A) receptors and gephyrin. J. Neurosci: Off. J. Soc. Neurosci. 2002. 22, 4805–4813

Anderson, J.L., Head, S.I., Morley, J.W. Duchenne muscular dystrophy and brain function. In: Hedge, M., Ankala, A. (Eds.), Muscular Dystrophy. Intech, 2012. pp. 91–122.

Perronnet, C., Vaillend, C. Dystrophins, utrophins, and associated scaffolding complexes: role in mammalian brain and implications for therapeutic strategies. J. Biomed. Biotechnol. 2010, 849426

Waite, A., Brown, S.C., Blake, D.J. The dystrophin–glycoprotein complex in brain development and disease. Trends Neurosci. 2010. 35, 487–496.

Connors, N.C., Adams, M.E., Froehner, S.C., Kofuji, P. The potassium channel Kir4.1 associates with the dystrophin–glycoprotein complex via alpha-syntrophin in glia. J Biol Chem. 2004 Jul 2;279(27):28387-92

Knuesel, I., Zuellig, R.A., Schaub, M.C., Fritschy, J.M. Alterations in dystrophin and utrophin expression parallel the reorganization of GABAergic synapses in a mouse model of temporal lobe epilepsy. Eur. J. Neurosci. 2001. Mar;13(6): 1113–1124

Fujimoto T., Itoh K., Yaoi T., Fushiki S. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons. Biochem Biophys Res Commun. 2014 Sep;452(1);79-84

Shiwaku H., Yoshimura N., Tamura T., Sone M., Ogishima S., Watase K., Tagawa K., Okazawa H. Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell autonomous toxicity. EMBO J. 2010 Jul;29(14):2446-60

Yang Y., Tang Y., Xing Y., Zhao M., Bao X., Sun D., Tang X., Wu Y., Xu H., Fan X. Activation of liver X receptor is protective against ethanol-induced developmental impairment of Bergmann glia and Purkinje neurons in the mouse cerebellum. Mol Neurobiol. 2014 Feb;49(1):176-86

Lavezzi A.M., Corna M.F., Matturri L. Neuronal nuclear antigen (NeuN): A useful marker of neuronal immaturity in sudden unexplained perinatal death. J Neurol Sci. 2013. 329:45-50

Snow W.M., Fry M., Anderson J.E. Increased density of dystrophin protein in the lateral versus the vermal mouse cerebellum. Cell Mol Neurobiol. 2013 May;33(4):513-20